Home HOMEPAGE   Fri, 12/27/2024 GMT + 7
    Q & A   Site map Forum   Site map Sitemap   E-mali Contact   Vietnamese Vietnamese
IMPE-QN
Web Sites & Commerce News - Events
Web Sites & Commerce Introduction
Web Sites & Commerce Collaborative activities
Web Sites & Commerce Training
Web Sites & Commerce Specific research studies
Web Sites & Commerce Publications
Web Sites & Commerce Mass organization activities
Web Sites & Commerce Legal documents
Web Sites & Commerce Statistical data
Web Sites & Commerce Work safety
Web Sites & Commerce Vietnam`s Physicians
Web Sites & Commerce Malariology
Web Sites & Commerce Helminthology
Finance & Retail Other vector-borne diseases
Dengue fever/ Dengue Haemorrhagic Fever
Japanese Encephalisis B
Vectors of Lymphatic Filariasis
Acarology ( tichk, fleas, house-dust mistes)

SEARCH

LOGIN
Username
Password

WEBLINKS
Other links

Visiting users: 45
5 4 8 6 1 7 4 6
Online
4 5
 Other vector-borne diseases
Researchers propose new dengue virus treatments

Released by Johannes Gutenberg Universitaet Mainz

Researchers from Johannes Gutenberg University Mainz (JGU) and the Julius Maximilian University of Würzburg are proposing potential new active substances for treating the dengue virus. Just like Ebola, dengue fever is also caused by a virus for which there is currently no cure and no vaccine and can be fatal.


In the quest for medication to treat the dengue virus, the scientific community is focusing o­n a particular enzyme of the pathogen, the protease known as NS2B/NS3. The reason for this is that inhibitors of similar proteases have been revealed to be very effective with other viruses. Protease inhibitors are already being used successfully in the treatment of HIV and Hepatitis patients. There are also several inhibitors for the dengue protease. However, at best, they stop o­nly half of the viruses from multiplying, which is not enough for clinical applications. The Würzburg team led by virologist PD Dr. Jochen Bodem, in collaboration with scientists from Mainz University, has discovered far better inhibitors, which are now presented in the journal Antimicrobial Agents and Chemotherapy.

"We have developed seven good to very good inhibitors from the diaryl thioether class of molecules, and two of these are even really good," said Bodem. When these two are used, o­nly around three percent of the virus population in a cell culture survives even with very low concentrations of the active substance. From the point of view of science, this is a very good result, especially as the inhibitors, as desired, are highly specialist: they o­nly target dengue viruses and have no impact whatsoever o­n very close relatives like the Hepatitis C virus.

The new active substances were developed by a team of virologists and pharmacists. From Mainz, Professor Tanja Schirmeister and, in particular, her colleague Hongmei Wu, were involved. Schirmeister's team synthesized the inhibitors and then examined and further developed their interactions with the enzyme using computer-assisted methods. o­n Jochen Bodem's team, Stefanie Bock, who is now working towards a doctorate at the University of Münster, played a key role. Here the protease of the viruses was obtained and cleaned. The effect of the active substances o­n the dengue virus was later demonstrated in the safety laboratory. As a next step, the scientists will check whether the new active substances have negative effects o­n higher organisms and whether they inhibit viral replication there as well.

Dengue fever originated in the tropics. However, for a few years now it has also been found in other warm regions of the world, such as the Mediterranean. Scientists are attributing this to climate change: the mosquitoes that transmit the virus to humans are able to expand their habitat thanks to increasing global warming. Back in 2010, the Robert Koch Institute reported o­n dengue fever in southern Franceand Croatia. In Germanyin 2013, there were a total of 879 recorded dengue patients - all travelers who had become infected in the southern hemisphere and in tropical countries. The World Health Organization (WHO) estimates that the number of infections globally stands at 390 million a year. In 1970, infections occurred in just nine countries. These days, that figure has already risen to over 100.

The virus is transmitted by the tiger mosquito and other mosquitoes. Usually the infection goes unnoticed since there are no signs of the disease in almost 90 percent of cases. In the remaining cases, an influenza-type illness develops, which may take a potentially fatal course, especially in children. In addition to muscle and bone pain accompanied by a high temperature for days, the patient then develops internal bleeding and other severe symptoms. Without intensive medical treatment, around half of these sufferers die. To date, there is no vaccine and no way of fighting the dengue virus with specific drugs. It is therefore recommended that measures be taken to protect against mosquito bites in countries where there is a risk of infection, such as covering the skin with clothes as much as possible, sleeping under a mosquito net, and applying mosquito-repellent creams.

More details about the research are available in the "Antimicrobial Agents and Chemotherapy" journal.


12/26/2014
 
    Other news »

Announcement

LIBRARY
Book
Magazine
Document
Photos
Thesis
Documentary form
Research studies
PROFFESSIONAL SOFTWARE
Malaria forecast & management
Document management
Personel management
LEGAL DOCUMENTS
Law
Decision
Decree
Instruction
Circular
Official document
Reports
Others
SPECIFIED IMFORMATION
Malaria facts
Malaria epidemic
Petechial fever
HEALTH SERVICES
Hospital & medical centre
Drugstore
Surgery
Your doctor

Institue of Malariology Parastology and Entomology Quy Nhon
Address: 611B Nguyen Thai Hoc Str,. Quy Nhon City
Tel: (84) 056 846571 Fax: (84) 056 846755
• Designed by Quang Ich JSC