Djogbenou L, Chandre F, Berthomieu A, Dabire R, Koffi A, Alout H, Weill M: Evidence of introgression of the ace-1(R) mutation and of the ace-1 duplication in West African Anopheles gambiae s. s. PLoS o­ !important;nE 2008, 3(5):e2172 !important; Ffrench-Constant RH: The molecular and population genetics of cyclodiene insecticide resistance. Insect Biochem Mol Biol 1994, 24(4):335-345…
[1] Djogbenou L, Chandre F, Berthomieu A, Dabire R, Koffi A, Alout H, Weill M: Evidence of introgression of the ace-1(R) mutation and of the ace-1 duplication in West African Anopheles gambiae s. s. PLoS o­ !important;nE 2008, 3(5):e2172.
[2] Ffrench-Constant RH: The molecular and population genetics of cyclodiene insecticide resistance. Insect Biochem Mol Biol 1994, 24(4):335-345.
[3] Andreasen MH, Ffrench-Constant RH: In situ hybridization to the Rdl locus o­ !important;n polytene chromosome 3L of Anopheles stephensi. Med Vet Entomol 2002, 16(4):452-455.
[4] Du W, Awolola TS, Howell P, Koekemoer LL, Brooke BD, Benedict MQ, Coetzee M, Zheng L: Independent mutations in the Rdl locus confer dieldrin resistance to Anopheles gambiae and An. arabiensis. Insect Mol Biol 2005, 14(2):179-183.
[5] Davies TG, Field LM, Usherwood PN, Williamson MS: DDT, pyrethrins, pyrethroids and insect sodium channels. IUBMB Life 2007, 59(3):151-162.
[6] Donnelly MJ, Corbel V, Weetman D, Wilding CS, Williamson MS, Black WCt: Does kdr genotype predict insecticide-resistance phenotype in mosquitoes? Trends Parasitol 2009, 25(5):213-219.
[7] Martinez Torres D, Chandre F, Williamson MS, Darriet F, Berge JB, Devonshire AL, Guillet P, Pasteur N, Pauron D: Molecular characterization of pyrethroid knockdown resistance (kdr) in the major malaria vector Anopheles gambiae s.s. Insect Molecular Biology 1998, 7(2):179-184.
[8] Ranson H, Jensen B, Vulule JM, Wang X, Hemingway J, Collins FH: Identification of a point mutation in the voltage-gated sodium channel gene of Kenyan Anopheles gambiae associated with resistance to DDT and pyrethroids. Insect Molecular Biology 2000, 9(5):491-497.
  !important; |
[9] O' !important;Reilly AO, Khambay BP, Williamson MS, Field LM, Wallace BA, Davies TG: Modelling insecticide-binding sites in the voltage-gated sodium channel. Biochem J 2006, 396(2):255-263.
[10] Jones CM, Liyanapathirana M, Agossa FR, Weetman D, Ranson H, Donnelly MJ, Wilding CS: Footprints of positive selection associated with a mutation (N1575Y) in the voltage-gated sodium channel of Anopheles gambiae. Proc Natl Acad Sci U S A 2012, 109(17):6614-6619.
[11] Plapp FW, Jr.: The genetic basis of insecticide resistance in the house fly: evidence that a single locus plays a major role in metabolic resistance to insecticides. Pesticide Biochemistry and Physiology 1984, 22(2):194-201.
  !important; |
[12] Georghiou GP, Ariaratnam V, Pasternak ME, Lin CS: Organophosphorus multiresistance in Culex pipiens quinquefasciatus in California. Journal of Economic Entomology 1975, 68(4):461-467.
[13] Vontas J, David JP, Nikou D, Hemingway J, Christophides GK, Louis C, Ranson H: Transcriptional analysis of insecticide resistance in Anopheles stephensi using crossspecies microarray hybridization. Insect Mol Biol 2007, 16(3):315-324.
[14] Awolola TS, Oduola OA, Strode C, Koekemoer LL, Brooke B, Ranson H: Evidence of multiple pyrethroid resistance mechanisms in the malaria vector Anopheles gambiae sensu stricto from Nigeria. Trans R Soc Trop Med Hyg 2009, 103(11):1139-1145.
[15] Wood O, Hanrahan S, Coetzee M, Koekemoer L, Brooke B: Cuticle thickening associated with pyrethroid resistance in the major malaria vector Anopheles funestus. Parasit Vectors 2010, 3:67.
[16] Roberts DR, Chareonviriyaphap T, Harlan HH, Hshieh P: Methods of testing and analyzing excito-repellency responses of malaria vectors to insecticides. J Am Mosq Control Assoc 1997, 13(1):13-17.
[17] Chandre F, Darriet F, Duchon S, Finot L, Manguin S, Carnevale P, Guillet P: Modifications of pyrethroid effects associated with kdr mutation in Anopheles gambiae. Medical and Veterinary Entomology 2000, 14(1):81-88.
[18] Gahan JB, Lindquist AW: DDT residual sprays applied in buildings to control Anopheles quadrimaculatus. Journal of Economic Entomology 1945, 38 (2):223-230.
[19] Chareonviriyaphap T, Roberts DR, Andre RG, Harlan HJ, Manguin S, Bangs MJ: Pesticide avoidance behavior in Anopheles albimanus, a malaria vector in the Americas. J Am Mosq Control Assoc 1997, 13(2):171-183.
[20] Garros C, Marchand RP, Quang NT, Hai NS, Manguin S: First record of Anopheles minimus C and significant decrease of An. minimus A in central Vietnam. J Am Mosq Control Assoc 2005, 21(2):139-143.
[21] Russell TL, Govella NJ, Azizi S, Drakeley CJ, Kachur SP, Killeen GF: Increased proportions of outdoor feeding among residual malaria vector populations following increased use of insecticide-treated nets in rural Tanzania. Malar J 2011, 10:80.
[22] Moiroux N, Gomez MB, Pennetier C, Elanga E, Djenontin A, Chandre F, Djegbe I, Guis H, Corbel V: Changes in Anopheles funestus Biting Behavior Following Universal Coverage of Long-Lasting Insecticidal Nets in Benin. J Infect Dis 2012, 206(10): 1622-1629.
[23] WHO: Guidelines for testing mosquito adulticides intended for Indoor Residual Spraying (IRS) and Insecticide Treated Nets (ITNs). 2006, WHO/CDS/NTD/WHOPES/GCDDP/2006.3.
[24] WHO: Report of the WHO Informal Consultation Tests procedures for insecticide resistance monitoring in malaria vectors, bio-efficacy and persistence of insecticides o­ !important;n treated surfaces. In. Geneva: World Health Organization: Parasitic Diseases and Vector Control (PVC)/Communicable Disease Control, Prevention and Eradication (CPE); 1998: 43.
[25] Williams J, Pinto J: Training Manual o­ !important;n Malaria Entomology; For Entomology and Vector Control Technicians (Basic Level) In. Edited by USAID. Washington, D.C.; 2012: 78.
[26] Ranson H, Abdallah H, Badolo A, Guelbeogo WM, Kerah-Hinzoumbe C, Yangalbe-Kalnone E, Sagnon N, Simard F, Coetzee M: Insecticide resistance in Anopheles gambiae: data from the first year of a multi-country study highlight the extent of the problem. Malar J 2009, 8(1):299.
[27] Skovmand O, Bonnet J, Pigeon O, Corbel V: Median knock-down time as a new method for evaluating insecticide-treated textiles for mosquito control. Malar J 2008, 7:114.
[28] Brogdon WG, McAllister JC: Simplification of adult mosquito bioassays through use of time-mortality determinations in glass bottles. J Am Mosq Control Assoc 1998, 14(2): 159-164.
[29] World Health Organization: Techniques to detect insecticide resistance mechanisms (field and laboratory manual). In. Edited by WHO/CDS/CPC/MAL/98.6 WHO. Geneva: World Health Organization !important; 1998.
[30] Munhenga G, Masendu HT, Brooke BD, Hunt RH, Koekemoer LK: Pyrethroid resistance in the major malaria vector Anopheles arabiensis from Gwave, a malaria-endemic area in Zimbabwe. Malar J 2008, 7:247.
[31] Okoye PN, Brooke BD, Koekemoer LL, Hunt RH, Coetzee M: Characterisation of DDT, pyrethroid and carbamate resistance in Anopheles funestus from Obuasi, Ghana. Trans R Soc Trop Med Hyg 2008, 102(6):591-598.
[32] Kelly-Hope L, Ranson H, Hemingway J: Lessons from the past: managing insecticide resistance in malaria control and eradication programmes. Lancet Infect Dis 2008.
[33] Chouaibou M, Etang J, Brevault T, Nwane P, Hinzoumbe CK, Mimpfoundi R, Simard F: Dynamics of insecticide resistance in the malaria vector Anopheles gambiae s.l. from an area of extensive cotton cultivation in Northern Cameroon. Trop Med Int Health 2008, 13(4):476-486.
[34] Djegbe I, Boussari O, Sidick A, Martin T, Ranson H, Chandre F, Akogbeto M, Corbel V: Dynamics of insecticide resistance in malaria vectors in Benin: first evidence of the presence of L1014S kdr mutation in Anopheles gambiae from West Africa. Malaria Journal 2011, 10(1):261.
[35] Dabire KR, Diabate A, Pare-Toe L, Rouamba J, Ouari A, Fontenille D, Baldet T: Year to year and seasonal variations in vector bionomics and malaria transmission in a humid savannah village in west Burkina Faso. J Vector Ecol 2008, 33(1):70-75.
[36] Bass C, Nikou D, Donnelly MJ, Williamson MS, Ranson H, Ball A, Vontas J, Field LM: Detection of knockdown resistance (kdr) mutations in Anopheles gambiae: a comparison of two new high-throughput assays with existing methods. Malar J 2007, 6:111.
  !important; |
[37] Corbel V, N' !important;Guessan R, Brengues C, Chandre F, Djogbenou L, Martin T, Akogbeto M, Hougard JM, Rowland M: Multiple insecticide resistance mechanisms in Anopheles gambiae and Culex quinquefasciatus from Benin, West Africa. Acta Trop 2007, 101(3): 207-216.
[38] Diabate A: The Role of Agricultural Uses of Insecticides in Resistance to Pyrethroids in Anopheles gambiae S.L. in Burkina Faso. Am J Trop Med Hyg 2002, 67(6):617-622.
[39] Carnevale P, Toto JC, Guibert P, Keita M, Manguin S: Entomological survey and report of a knockdown resistance mutation in the malaria vector Anopheles gambiae from the Republic of Guinea. Trans R Soc Trop Med Hyg, 104(7):484-489.
[40] Yawson AE, McCall PJ, Wilson MD, Donnelly MJ: Species abundance and insecticide resistance of Anopheles gambiae in selected areas of Ghana and Burkina Faso. Med Vet Entomol 2004, 18(4):372-377.
[41] C. Fanello VP, A. della Torre, F. Santolamazza, G. Dolo, M. Coulibaly, A. Alloueche, C. F. Curtis, Y. T. Touré and M. Coluzzi: The pyrethroid knock-down resistance gene in the Anopheles gambiae complex in Mali and further indication of incipient speciation within An. gambiae s.s. Insect Molecular Biology 2003, 12(3):241-245.
[42] Czeher C, Labbo R, Arzika I, Duchemin J-B: Evidence of increasing Leu-Phe knockdown resistance mutation in Anopheles gambiae from Niger following a nationwide long-lasting insecticide-treated nets implementation. Malaria Journal 2008, 7(1):189.
[43] Awolola TS, Brooke BD, Hunt RH, Coetze M: Resistance of the malaria vector Anopheles gambiae s.s. to pyrethroid insecticides, in south-western Nigeria. Annals of Tropical Medicine and Parasitology 2002, 96(8):849-852.
[44] Koffi AA, Alou LP, Adja MA, Kone M, Chandre F, N' !important;Guessan R: Update on resistance status of Anopheles gambiae s.s. to conventional insecticides at a previous WHOPES field site, "Yaokoffikro", 6 years after the political crisis in Cote d' !important;Ivoire. Parasit Vectors 2012, 5:68.
  !important; |
[45] Dabire KR, Diabate A, Agostinho F, Alves F, Manga L, Faye O, Baldet T: Distribution of the members of Anopheles gambiae and pyrethroid knock-down resistance gene (kdr) in Guinea-Bissau, West Africa. Bull Soc Pathol Exot 2008, 101(2):119-123.
[46] Etang J, Fondjo E, Chandre F, Morlais I, Brengues C, Nwane P, Chouaibou M, Ndjemai H, Simard F: First report of knockdown mutations in the malaria vector Anopheles gambiae from Cameroon. Am J Trop Med Hyg 2006, 74(5):795-797.
[47] Ndjemai HN, Patchoke S, Atangana J, Etang J, Simard F, Bilong CF, Reimer L, Cornel A, Lanzaro GC, Fondjo E: The distribution of insecticide resistance in Anopheles gambiae s.l. populations from Cameroon: an update. Trans R Soc Trop Med Hyg 2009.
[48] Nwane P, Etang J, Chouaibou M, Toto JC, Kerah-Hinzoumbe C, Mimpfoundi R, Awono-Ambene HP, Simard F: Trends in DDT and pyrethroid resistance in Anopheles gambiae s.s. populations from urban and agro-industrial settings in southern Cameroon. BMC Infect Dis 2009, 9:163.
[49] Kerah-Hinzoumbe C, Peka M, Nwane P, Donan-Gouni I, Etang J, Same-Ekobo A, Simard F: Insecticide resistance in Anopheles gambiae from south-western Chad, Central Africa. Malar J 2008, 7:192.
[50] Janeira F, Vicente JL, Kanganje Y, Moreno M, Do Rosario VE, Cravo P, Pinto J: A primer-introduced restriction analysis-polymerase chain reaction method to detect knockdown resistance mutations in Anopheles gambiae. J Med Entomol 2008, 45(2): 237-241.
[51] Mourou JR, Coffinet T, Jarjaval F, Pradines B, Amalvict R, Rogier C, Kombila M, Pages F: Malaria transmission and insecticide resistance of Anopheles gambiae in Libreville and Port-Gentil, Gabon. Malar J 2010, 9:321.
[52] Himeidan YE, Chen H, Chandre F, Donnelly MJ, Yan G: Short report: permethrin and DDT resistance in the malaria vector Anopheles arabiensis from eastern Sudan. Am J Trop Med Hyg 2007, 77(6):1066-1068.
[53] Abdalla H, Matambo TS, Koekemoer LL, Mnzava AP, Hunt RH, Coetzee M: Insecticide susceptibility and vector status of natural populations of Anopheles arabiensis from Sudan. Transactions of the Royal Society of Tropical Medicine and Hygiene 2008, 102(3):263-271.
  !important; |
[54] Costantini C, Ayala D, Guelbeogo WM, Pombi M, Some CY, Bassole IH, Ose K, Fotsing JM, Sagnon N, Fontenille D et al: Living at the edge: biogeographic patterns of habitat segregation conform to speciation by niche expansion in Anopheles gambiae. BMC Ecol 2009, 9(1):16.
[55] Kulkarni MA, Malima R, Mosha FW, Msangi S, Mrema E, Kabula B, Lawrence B, Kinung' !important;hi S, Swilla J, Kisinza W et al: Efficacy of pyrethroid-treated nets against malaria vectors and nuisance-biting mosquitoes in Tanzania in areas with long-term insecticide-treated net use. Trop Med Int Health 2007, 12(9):1061-1073.
[56] Kabula B, Tungu P, Matowo J, Kitau J, Mweya C, Emidi B, Masue D, Sindato C, Malima R, Minja J et al: Susceptibility status of malaria vectors to insecticides commonly used for malaria control in Tanzania. Trop Med Int Health 2012, 17(6):742-750.
[57] Coleman M, Casimiro S, Hemingway J, Sharp B: Operational impact of DDT reintroduction for malaria control o­ !important;n Anopheles arabiensis in Mozambique. J Med Entomol 2008, 45(5):885-890.
[58] Ratovonjato J, Le Goff G, Rajaonarivelo E, Rakotondraibe EM, Robert V: [Recent observations o­ !important;n the sensitivity to pyrethroids and DDT of Anopheles arabiensis and Anopheles funestus in the central Highlands of Madagascar !important; preliminary results on the absence of the kdr mutation in An. arabiensis]. Arch Inst Pasteur Madagascar 2003, 69(1-2):63-69.
[59] Ramphul U, Boase T, Bass C, Okedi LM, Donnelly MJ, Muller P: Insecticide resistance and its association with target-site mutations in natural populations of Anopheles gambiae from eastern Uganda. Trans R Soc Trop Med Hyg 2009.
[60] Verhaeghen K, Bortel WV, Roelants P, Okello PE, Talisuna A, Coosemans M: Spatiotemporal patterns in kdr frequency in permethrin and DDT resistant Anopheles gambiae s.s. from Uganda. Am J Trop Med Hyg 2010, 82(4):566-573.
[61] Abate A, Hadis M: Susceptibility of Anopheles gambiae s.l. to DDT, malathion, permethrin and deltamethrin in Ethiopia. Trop Med Int Health 2011, 16(4):486-491.
[62] Ochomo E, Bayoh MN, Brogdon WG, Gimnig JE, Ouma C, Vulule JM, Walker ED: Pyrethroid resistance in Anopheles gambiae s.s. and Anopheles arabiensis in western Kenya: phenotypic, metabolic and target site characterizations of three populations. Med Vet Entomol 2012.
[63] Mathias DK, Ochomo E, Atieli F, Ombok M, Bayoh MN, Olang G, Muhia D, Kamau L, Vulule JM, Hamel MJ et al: Spatial and temporal variation in the kdr allele L1014S in Anopheles gambiae s.s. and phenotypic variability in susceptibility to insecticides in Western Kenya. Malar J 2011, 10:10.
[64] Chanda E, Hemingway J, Kleinschmidt I, Rehman AM, Ramdeen V, Phiri FN, Coetzer S, Mthembu D, Shinondo CJ, Chizema-Kawesha E et al: Insecticide resistance and the future of malaria control in Zambia. PLoS o­ !important;nE 2011, 6(9):e24336.
[65] Mouatcho JC, Munhenga G, Hargreaves K, Brooke BD, Coetzee M, Koekemoer LL: Pyrethroid resistance in a major African malaria vector Anopheles arabiensis from Mamfene, northern KwaZulu-Natal, South Africa. South African Journal of Science 2009, 105(3-4):127-131.
[66] Mouatcho JC, Hargreaves K, Koekemoer LL, Brooke BD, Oliver SV, Hunt RH, Coetzee M: Indoor collections of the Anopheles funestus group (Diptera: Culicidae) in sprayed houses in northern KwaZulu-Natal, South Africa. Malar J 2007, 6:30.
[67] Brooke BD, Kloke G, Hunt RH, Koekemoer LL, Temu EA, Taylor ME, Small G, Hemingway J, Coetzee M: Bioassay and biochemical analyses of insecticide resistance in southern African Anopheles funestus (Diptera: Culicidae). Bulletin of Entomological Research 2001, 91(4):265-272.
[68] Cuamba N, Morgan JC, Irving H, Steven A, Wondji CS: High level of pyrethroid resistance in an Anopheles funestus population of the Chokwe District in Mozambique. PLoS o­ !important;nE 2010, 5(6):e11010.
[69] Kloke RG, Nhamahanga E, Hunt RH, Coetzee M: Vectorial status and insecticide resistance of Anopheles funestus from a sugar estate in southern Mozambique. Parasit Vectors 2011, 4:16.
[70] Hunt R, Edwardes M, Coetzee M: Pyrethroid resistance in southern African Anopheles funestus extends to Likoma Island in Lake Malawi. Parasit Vectors 2010, 3:122.
[71] Wondji CS, Coleman M, Kleinschmidt I, Mzilahowa T, Irving H, Ndula M, Rehman A, Morgan J, Barnes KG, Hemingway J: Impact of pyrethroid resistance o­ !important;n operational malaria control in Malawi. Proc Natl Acad Sci U S A 2012, 109(47):19063-19070.
[72] Anto F, Asoala V, Anyorigiya T, Oduro A, Adjuik M, Owusu-Agyei S, Dery D, Bimi L, Hodgson A: Insecticide resistance profiles for malaria vectors in the Kassena-Nankana district of Ghana. Malaria Journal 2009, 8(1):81.
[73] Djouaka R, Irving H, Tukur Z, Wondji CS: Exploring mechanisms of multiple insecticide resistance in a population of the malaria vector Anopheles funestus in Benin. PloS o­ !important;nE 2011, 6(11):e27760.
[74] Dabire KR, Baldet T, Diabate A, Dia I, Costantini C, Cohuet A, Guiguemde TR, Fontenille D: Anopheles funestus (Diptera: Culicidae) in a humid savannah area of western Burkina Faso: bionomics, insecticide resistance status, and role in malaria transmission. J Med Entomol 2007, 44(6):990-997.
[75] Faraj C, Adlaoui E, Brengues C, Fontenille D, Lyagoubi M: [Resistance of Anopheles labranchiae to DDT in Morocco: identification of the mechanisms and choice ofreplacement insecticide]. Eastern Mediterranean health journal = La revue de sante de la Mediterranee orientale = al-Majallah al-sihhiyah li-sharq al-mutawassit 2008, 14(4):776-783.
[76] Mostafa AA, Allam KA: Studies o­ !important;n the present status of insecticides resistance on mosquitoes using the diagnostic dosages in El-Fayium Governorate, a spot area of malaria in Egypt. J Egypt Soc Parasitol 2001, 31(1):177-186.
[77] Balkew M, Elhassan I, Ibrahim M, GebreMichael T, Engers H: Very high DDT-resistant population of Anopheles pharoensis Theobald (Diptera: Culicidae) from Gorgora, northern Ethiopia. Parasite 2006, 13(4):327-239.
[78] Yadouleton AW, Padonou G, Asidi A, Moiroux N, Bio-Banganna S, Corbel V, N' !important;Guessan R, Gbenou D, Yacoubou I, Gazard K et al: Insecticide resistance status in Anopheles gambiae in southern Benin. Malar J 2010, 9:83.
[79] Pinto J, Lynd A, Vicente JL, Santolamazza F, Randle NP, Gentile G, Moreno M, Simard F, Charlwood JD, do Rosario VE et al: Multiple Origins of Knockdown Resistance Mutations in the Afrotropical Mosquito Vector Anopheles gambiae. PLoS o­ !important;nE 2007, 2(11):e1243.
[80] della Torre A, Fanello C, Akogbeto M, Dossou-yovo J, Favia G, Petrarca V, Coluzzi M: Molecular evidence of incipient speciation within Anopheles gambiae s.s. in West Africa. Insect Mol Biol 2001, 10(1):9-18.
[81] Weill M, Chandre F, Brengues C, Manguin S, Akogbeto M, Pasteur N, Guillet P, Raymond M: The kdr mutation occurs in the Mopti form of Anopheles gambiae s.s. through introgression. Insect Molecular Biology 2000, 9(5):451-455.
[82] Reimer LJ, Tripet F, Slotman M, Spielman A, Fondjo E, Lanzaro GC: An unusual distribution of the kdr gene among populations of Anopheles gambiae on the island of Bioko, Equatorial Guinea. Insect Mol Biol 2005, 14(6):683-688.
[83] Protopopoff N, Verhaeghen K, Van Bortel W, Roelants P, Marcotty T, Baza D, D' !important;Alessandro U, Coosemans M: A significant increase in kdr in Anopheles gambiae is associated with an intensive vector control intervention in Burundi highlands. Trop Med Int Health 2008, 13(12):1479-1487.
[84] Pinto J, Lynd A, Elissa N, Donnelly MJ, Costa C, Gentile G, Caccone A, do Rosario VE: Co-occurrence of East and West African kdr mutations suggests high levels of resistance to pyrethroid insecticides in Anopheles gambiae from Libreville, Gabon. Med Vet Entomol 2006, 20(1):27-32.
[85] Moreno M, Vicente JL, Cano J, Berzosa PJ, de Lucio A, Nzambo S, Bobuakasi L, Buatiche JN, o­ !important;ndo M, Micha F et al: Knockdown resistance mutations (kdr) and insecticide susceptibility to DDT and pyrethroids in Anopheles gambiae from Equatorial Guinea. Trop Med Int Health 2008, 13(3):430-433.
[86] Verhaeghen K, Van Bortel W, Roelants P, Backeljau T, Coosemans M: Detection of the East and West African kdr mutation in Anopheles gambiae and Anopheles arabiensis from Uganda using a new assay based o­ !important;n FRET/Melt Curve analysis. Malaria Journal 2006, 5(1):16.
[87] Koekemoer LL, Spillings BL, Christian RN, Lo TC, Kaiser ML, Norton RA, Oliver SV, Choi KS, Brooke BD, Hunt RH et al: Multiple insecticide resistance in Anopheles gambiae (Diptera: Culicidae) from Pointe Noire, Republic of the Congo. Vector Borne Zoonotic Dis 2011, 11(8):1193-1200.
[88] Reimer L, Fondjo E, Patchoke S, Diallo B, Lee Y, Ng A, Ndjemai HM, Atangana J, Traore SF, Lanzaro G et al: Relationship between kdr mutation and resistance to pyrethroid and DDT insecticides in natural populations of Anopheles gambiae. J Med Entomol 2008, 45(2):260-266.
[89] Badolo A, Traore A, Jones CM, Sanou A, Flood L, Guelbeogo WM, Ranson H, Sagnon N: Three years of insecticide resistance monitoring in Anopheles gambiae in Burkina Faso: resistance o­ !important;n the rise? Malar J 2012, 11:232.
[90] Santolamazza F, Calzetta M, Etang J, Barrese E, Dia I, Caccone A, Donnelly MJ, Petrarca V, Simard F, Pinto J et al: Distribution of knock-down resistance mutations in 624 Anopheles mosquitoes - New insights into malaria vectors Anopheles gambiae molecular forms in west and west-central Africa. Malar J 2008, 7(1): 74.
[91] Ridl F, Bass C, Torrez M, Govender D, Ramdeen V, Yellot L, Edu A, Schwabe C, Mohloai P, Maharaj R et al: A pre-intervention study of malaria vector abundance in Rio Muni, Equatorial Guinea: Their role in malaria transmission and the incidence of insecticide resistance alleles. Malaria Journal 2008, 7(1):194.
[92] Reimer L, Fondjo E, Patchok, Salomon, Diallo B, Lee Y, Ng A, Ndjemai HM, Atangana J, Traore SF et al: Relationship Between kdr Mutation and Resistance to Pyrethroid and DDT Insecticides in Natural Populations of Anopheles gambiae. Journal of Medical Entomology 2008, 45:260-266.
[93] Matambo TS, Abdalla H, Brooke BD, Koekemoer LL, Mnzava A, Hunt RH, Coetzee M: Insecticide resistance in the malarial mosquito Anopheles arabiensis and association with the kdr mutation. Medical and Veterinary Entomology 2007, 21(1):97-102.
[94] Kulkarni M, Rowland M, Alifrangis M, Mosha F, Matowo J, Malima R, Peter J, Kweka E, Lyimo I, Magesa S et al: Occurrence of the leucine-to-phenylalanine knockdown resistance (kdr) mutation in Anopheles arabiensis populations in Tanzania, detected by a simplified high-throughput SSOP-ELISA method. Malaria Journal 2006, 5(1):56.
[95] Chen H, Githeko AK, Githure JI, Mutunga J, Zhou G, Yan G: Monooxygenase Levels and Knockdown Resistance (kdr) Allele Frequencies in Anopheles gambiae and Anopheles arabiensis in Kenya. Journal of Medical Entomology 2008, 45:242-250.
[96] Etang J, Manga L, Toto JC, Guillet P, Fondjo E, Chandre F: Spectrum of metabolicbased resistance to DDT and pyrethroids in Anopheles gambiae s.l. populations from Cameroon. J Vector Ecol 2007, 32(1):123-133.
[97] Hargreaves K, Hunt RH, Brooke BD, Mthembu J, Weeto MM, Awolola TS, Coetzee M: Anopheles arabiensis and An. quadriannulatus resistance to DDT in South Africa. Med Vet Entomol 2003, 17(4):417-422.
[98] Amenya DA, Naguran R, Lo TC, Ranson H, Spillings BL, Wood OR, Brooke BD, Coetzee M, Koekemoer LL: Over expression of a cytochrome P450 (CYP6P9) in a major African malaria vector, Anopheles funestus, resistant to pyrethroids. Insect Mol Biol 2008, 17(1):19-25.
[99] Somboon P, Prapanthadara LA, Suwonkerd W: Insecticide susceptibility tests of Anopheles minimus s.l., Aedes aegypti, Aedes albopictus, and Culex quinquefasciatus in northern Thailand. Southeast Asian J Trop Med Public Health 2003, 34(1):87-93.
[100] Verhaeghen K, Van Bortel W, Trung HD, Sochantha T, Coosemans M: Absence of knockdown resistance suggests metabolic resistance in the main malaria vectors of the Mekong region. Malar J 2009, 8:84.
[101] Chareonviriyaphap T, Rongnoparut P, Chantarumporn P, Bangs MJ: Biochemical detection of pyrethroid resistance mechanisms in Anopheles minimus in Thailand. J Vector Ecol 2003, 28(1):108-116.
[102] Rodpradit P, Boonsuepsakul S, Chareonviriyaphap T, Bangs MJ, Rongnoparut P: Cytochrome P450 genes: molecular cloning and overexpression in a pyrethroid-resistant strain of Anopheles minimus mosquito. J Am Mosq Control Assoc 2005, 21(1):71-79.
[103] Verhaeghen K, Van Bortel W, Trung HD, Sochantha T, Keokenchanh K, Coosemans M: Knockdown resistance in Anopheles vagus, An. sinensis, An. paraliae and An. peditaeniatus populations of the Mekong region. Parasit Vectors 2011, 3(1):59.
[104] Kang S, Jung J, Lee S, Hwang H, Kim W: The polymorphism and the geographical distribution of the knockdown resistance (kdr) of Anopheles sinensis in the Republic of Korea. Malar J 2012, 11:151.
[105] Tan WL, Wang ZM, Li CX, Chu HL, Xu Y, Dong YD, Wang ZC, Chen DY, Liu H, Liu DP et al: First report o­ !important;n co-occurrence knockdown resistance mutations and susceptibility to beta-cypermethrin in Anopheles sinensis from Jiangsu Province, China. PloS o­ !important;nE 2012, 7(1):e29242.
[106] Syafruddin D, Hidayati AP, Asih PB, Hawley WA, Sukowati S, Lobo NF: Detection of 1014F kdr mutation in four major Anopheline malaria vectors in Indonesia. Malar J 2010, 9:315.
[107] Singh OP, Dykes CL, Das MK, Pradhan S, Bhatt RM, Agrawal OP, Adak T: Presence of two alternative kdr-like mutations, L1014F and L1014S, and a novel mutation, V1010L, in the voltage gated Na+ channel of Anopheles culicifacies from Orissa, India. Malar J 2010, 9:146.
[108] Mishra AK, Chand SK, Barik TK, Dua VK, Raghavendra K: Insecticide resistance status in Anopheles culicifacies in Madhya Pradesh, central India. J Vector Borne Dis 2012, 49(1):39-41.
[109] Sharma SN, Shukla RP, Raghavendra K: Susceptibility status of An. fluviatilis and An.culicifacies to DDT, deltamethrin and lambdacyhalothrin in District Nainital, Uttar Pradesh. Indian J Malariol 1999, 36(3-4):90-93.
[110] Singh OP, Dykes CL, Lather M, Agrawal OP, Adak T: Knockdown resistance (kdr)-like mutations in the voltage-gated sodium channel of a malaria vector Anopheles stephensi and PCR assays for their detection. Malar J 2011, 10:59.
[111] Tikar SN, Mendki MJ, Sharma AK, Sukumaran D, Veer V, Prakash S, Parashar BD: Resistance status of the malaria vector mosquitoes, Anopheles stephensi and Anopheles subpictus towards adulticides and larvicides in arid and semi-arid areas of India. J InsectSci 2011, 11:85.
[112] Baruah K, Lal S: A report o­ !important;n the susceptibility status of Anopheles minimus (Theobald) against DDT and deltamethrin in three districts of Assam. J Vector Borne Dis 2004, 41(1-2):42-44.
[113] Karunaratne SH, Hemingway J: Malathion resistance and prevalence of the malathion carboxylesterase mechanism in populations of mosquito vectors of disease in Sri Lanka. Bull World Health Organ 2001, 79(11):1060-1064.
[114] Kelly-Hope LA, Yapabandara AM, Wickramasinghe MB, Perera MD, Karunaratne SH, Fernando WP, Abeyasinghe RR, Siyambalagoda RR, Herath PR, Galappaththy GN et al: Spatiotemporal distribution of insecticide resistance in Anopheles culicifacies and Anopheles subpictus in Sri Lanka. Trans R Soc Trop Med Hyg 2005, 99(10):751-761.
[115] Perera MD, Hemingway J, Karunaratne SP: Multiple insecticide resistance mechanisms involving metabolic changes and insensitive target sites selected in anopheline vectors of malaria in Sri Lanka. Malar J 2008, 7:168.
[116] Surendran SN, Jude PJ, Weerarathne TC, Parakrama Karunaratne SH, Ramasamy R: Variations in susceptibility to common insecticides and resistance mechanisms among morphologically identified sibling species of the malaria vector Anopheles subpictus in Sri Lanka. Parasit Vectors 2012, 5:34.
[117] Mittal PK, Wijeyaratne P, Pandey S: Status of Insecticide Resistance of Malaria, Kalaazar and Japanese Encephalitis Vectors in Bangladesh, Bhutan, India and Nepal (BBIN). In. Edited by Project EH. Washington 2004.
[118] Rowland M: Location ofthe gene for malathion resistance in Anopheles stephensi (Diptera: Culicidae) from Pakistan. J Med Entomol 1985, 22(4):373-380.
[119] Abai MR, Mehravaran A, Vatandoost H, Oshaghi MA, Javadian E, Mashayekhi M, Mosleminia A, Piyazak N, Edallat H, Mohtarami F et al: Comparative performance of imagicides o­ !important;n Anopheles stephensi, main malaria vector in a malarious area, southern Iran. J Vector Borne Dis 2008, 45(4):307-312.
[120] Lak SH, vatandoost H, Entezarmahdi MR, Ashraf H, Abai MR, Nazari M: Monitoring of Insecticide Resistance in Anopheles sacharovi (Favre, 1903) in Borderline of Iran, Armenia, Naxcivan and Turkey, 2001. Iranian J Publ Health 2002, 31(3-4):96-99.
[121] Vatandoost H, Mashayekhi M, Abaie MR, Aflatoonian MR, Hanafi-Bojd AA, Sharifi I: Monitoring of insecticides resistance in main malaria vectors in a malarious area of Kahnooj district, Kerman province, southeastern Iran. J Vector Borne Dis 2005, 42(3): 100-108.
[122] Malcolm CA: Current status of pyrethroid resistance in anophelines. Parasitol Today 1988, 4(7):S13-15.
[123] Quinones ML, Suarez MF: Irritability to DDT of natural populations of the primary malaria vectors in Colombia. J Am Mosq Control Assoc 1989, 5(1):56-59.
[124] Suarez MF, Quinones ML, Palacios JD, Carrillo A: First record of DDT resistance in Anopheles darlingi. J Am Mosq Control Assoc 1990, 6(1):72-74.
[125] Fonseca-Gonzalez I: Estatus de la resistencia a insecticidas de los vectores primarios de malaria y dengue en Antioquia, Chocó, Norte de Santander y Putumayo, Colombia. Universidad de Antioquia, Colombia !important; 2008.
[126] Fonseca-Gonzalez I, Cardenas R, Quinones ML, McAllister J, Brogdon WG: Pyrethroid and organophosphates resistance in Anopheles (N.) nuneztovari Gabaldon populations from malaria endemic areas in Colombia. Parasitol Res 2009, 105(5):1399-1409.
[127] Chareonviriyaphap T, Golenda CF, Roberts DR, Andre RG: Identification of Elevated Esterase Activity in a Pyrethroid-Resistant Population of Anopheles albimanus Wiedemann. ScienceAsia 1999, 25 153-156.
[128] Brogdon WG, McAllister JC, Corwin AM, Cordon Rosales C: Independent selection of multiple mechanisms for pyrethroid resistance in Guatemalan Anopheles albimanus (Diptera: Culicidae). Journal of Economic Entomology 1999, 92(2):298-302.
[129] Zamora Perea E, Balta Leon R, Palomino Salcedo M, Brogdon WG, Devine GJ: Adaptation and evaluation of the bottle assay for monitoring insecticide resistance in disease vector mosquitoes in the Peruvian Amazon. Malar J 2009, 8:208.
[130] Hemingway J, Penilla RP, Rodriguez AD, James BM, Edge W, Rogers H, Rodriguez MH: Resistance management strategies in malaria vector mosquito control. A largescale field trial in Southern Mexico. Pesticide Science 1997, 51(3):375-382.
[131] Dzul FA, Patricia Penilla R, Rodriguez AD: [Susceptibility and insecticide resistance mechanisms in Anopheles albimanus from the southern Yucatan Peninsula, Mexico]. Salud Publica Mex 2007, 49(4):302-311.
[132] South Africa Department of Health: Malaria Updates. In. Pretoria, S.A: S.A.D.H. !important; 2003.
[133] Maharaj R, Mthembu DJ, Sharp BL: Impact of DDT re-introduction o­ !important;n malaria transmission in KwaZulu-Natal. S Afr Med J 2005, 95(11):871-874.
[134] Roberts DR, Manguin S, Mouchet J: DDT house spraying and re-emerging malaria. Lancet 2000, 356(9226):330-332.
[135] Protopopoff N, Van Bortel W, Marcotty T, Van Herp M, Maes P, Baza D, D' !important;Alessandro U, Coosemans M: Spatial targeted vector control in the highlands of Burundi and its impact on malaria transmission. Malar J 2007, 6:158.
[136] Trape J-F, Tall A, Diagne N, Ndiath O, Ly AB, Faye J, Dieye-Ba F, Roucher C, Bouganali C, Badiane A et al: Malaria morbidity and pyrethroid resistance after the introduction of insecticide-treated bednets and artemisinin-based combination therapies: a longitudinal study. The Lancet Infectious Diseases 2011.
[137] Lengeler C: Insecticide-treated bed nets and curtains for preventing malaria. Cochrane Database of Systematic reviews 2009(2):1-58.
[138] Kitau J, Oxborough RM, Tungu PK, Matowo J, Malima RC, Magesa SM, Bruce J, Mosha FW, Rowland MW: Species shifts in the Anopheles gambiae complex: do LLINs successfully control Anopheles arabiensis? PLoS o­ !important;nE 2012, 7(3):e31481.
[139] Bradley J, Matias A, Schwabe C, Vargas D, Monti F, Nseng G, Kleinschmidt I: Increased risks of malaria due to limited residual life of insecticide and outdoor biting versus protection by combined use of nets and indoor residual spraying o­ !important;n Bioko Island, Equatorial Guinea. Malar J 2012, 11:242.
[140] Henry MC, Assi SB, Rogier C, Dossou-Yovo J, Chandre F, Guillet P, Carnevale P: Protective efficacy of lambda-cyhalothrin treated nets in Anopheles gambiae pyrethroid resistance areas of Cote d' !important;Ivoire. Am J Trop Med Hyg 2005, 73(5):859-864.
[141] Corbel V, Akogbeto M, Damien GB, Djenontin A, Chandre F, Rogier C, Moiroux N, Chabi J, Banganna B, Padonou GG et al: Combination of malaria vector control interventions in pyrethroid resistance area in Benin: a cluster randomised controlled trial. Lancet Infect Dis 2012, 12(8):617-626.
[142] Darriet F, N' !important; Guessan R, Koffi AA, Konan L, Doannio JMC, Chandre F, Carnevale P: Impact of the resistance to pyrethroids on the efficacy of impregnated bednets used as a means of prevention against malaria: results of the evaluation carried out with deltamethrin SC in experimental huts. Bulletin de la Société de Pathologie Exotique 2000, 93(2):131-134.
[143] Corbel V, Chandre F, Brengues C, Akogbeto M, Lardeux F, Hougard JM, Guillet P: Dosage-dependent effects of permethrin-treated nets o­ !important;n the behaviour of Anopheles gambiae and the selection of pyrethroid resistance. Malar J 2004, 3(1):22.
[144] N' !important;Guessan R, Corbel V, Akogbeto M, Rowland M: Reduced efficacy of insecticidetreated nets and indoor residual spraying for malaria control in pyrethroid resistance area, Benin. Emerg Infect Dis 2007, 13(2):199-206.
[145] N' !important;Guessan R, Asidi A, Boko P, Odjo A, Akogbeto M, Pigeon O, Rowland M: An experimental hut evaluation of PermaNet(R) 3.0, a deltamethrin-piperonyl butoxide combination net, against pyrethroid-resistant Anopheles gambiae and Culex quinquefasciatus mosquitoes in southern Benin. Trans R Soc Trop Med Hyg 2010, 104(12):758-765.
[146] Asidi A, N' !important;Guessan R, Akogbeto M, Curtis C, Rowland M: Loss of household protection from use of insecticide-treated nets against pyrethroid-resistant mosquitoes, Benin. Emerg Infect Dis 2012, 18(7):1101-1106.
[147] Osse R, Gnanguenon V, Sezonlin M, Aikpon R, Padonou G, Yadouleton A, Akogbeto M: Relationship between the presence of kdr and Ace-1 mutations and the infection with Plasmodium falciparum in Anopheles gambiae s.s. in Benin. Journal of Parassitology & !important; Vector Biology 2012, 4(3):31-39.
[148] Moiroux N, Boussari O, Djenontin A, Damien G, Cottrell G, Henry MC, Guis H, Corbel V: Dry season determinants of malaria disease and net use in Benin, West Africa. PLoS o­ !important;nE 2012, 7(1):e30558.
[149] Poupardin R, Reynaud S, Strode C, Ranson H, Vontas J, David JP: Cross-induction of detoxification genes by environmental xenobiotics and insecticides in the mosquito Aedes aegypti: impact o­ !important;n larval tolerance to chemical insecticides. Insect Biochem Mol Biol 2008, 38(5):540-551.
[150] IRAC: Prevention and Management of Insecticide Resistance in Vectors of Public Health Importance In: Resistance Management for Sustainable Agriculture and Improved Public Health : Second Edition 2010 Insecticide Resistance Action Commitee !important; 2010: 72pp.
[151] Georghiou GP, Taylor CE: Genetic and biological influences in the evolution of insecticide resistance. Journal of Economic Entomology 1977, 70(3):319-323.
[152] Denholm I, Rowland MW: Tactics for managing pesticide resistance in arthropods: theory and practice. Annu Rev Entomol 1992, 37:91-112.
[153] Djogbenou L, Weill M, Hougard JM, Raymond M, Akogbeto M, Chandre F: Characterization of insensitive acetylcholinesterase (ace-1R) in Anopheles gambiae (Diptera: Culicidae): resistance levels and dominance. J Med Entomol 2007, 44(5):805-810.
[154] Berticat C, Bonnet J, Duchon S, Agnew P, Weill M, Corbel V: Costs and benefits of multiple resistance to insecticides for Culex quinquefasciatus mosquitoes. BMC Evol Biol 2008, 8:104.
[155] Moore JH, Williams SM: Traversing the conceptual divide between biological and statistical epistasis: systems biology and a more modern synthesis. Bioessays 2005, 27(6):637-646.
[156] Shono T, Zhang L, Scott JG: Indoxacarb resistance in the house fly, Musca domestica. Pesticide Biochemistry and Physiology 2004, 80(2):106-112.
[157] Shono T, Kasai S, Kamiya E, Kono Y, Scott JG: Genetics and mechanisms of permethrin resistance in the YPER strain of house fly. Pesticide Biochemistry and Physiology 2002, 73(1):27-36.
[158] Scott JG, Shono T, Georghiou GP: Genetic analysis of permethrin resistance in the house fly, Musca domestica L. Experientia 1984, 40(12):1416-1418.
[159] Hardstone MC, Leichter CA, Scott JG: Multiplicative interaction between the two major mechanisms of permethrin resistance, kdr and cytochrome P450-monooxygenase detoxification, in mosquitoes. J Evol Biol 2009, 22(2):416-423.
[160] Berticat C, Boquien G, Raymond M, Chevillon C: Insecticide resistance genes induce a mating competition cost in Culex pipiens mosquitoes. Genet Res 2002, 79(1):41-47.
[161] Agnew P, Berticat C, Bedhomme S, Sidobre C, Michalakis Y: Parasitism increases and decreases the costs of insecticide resistance in mosquitoes. Evolution Int J Org Evolution 2004, 58(3):579-586.
[162] Foster SP, Harrington R, Devonshire AL, Denholm I, Devine GJ, Kenward MG: Comparative survival of insecticide-susceptible and resistant peach-potato aphids, Myzus persicae (Sulzer) (Hemiptera: Aphididae), in low temperature field trials. Bull Ent Res 1996, 86:17-27.
[163] Shi MA, Lougarre A, Alies C, Fremaux I, Tang ZH, Stojan J, Fournier D: Acetylcholinesterase alterations reveal the fitness cost of mutations conferring insecticide resistance. BMC Evol Biol 2004, 4:5.
[164] Djogbenou L, Noel V, Agnew P: Costs of insensitive acetylcholinesterase insecticide resistance for the malaria vector Anopheles gambiae homozygous for the G119S mutation. Malar J 2010, 9(1):12.
[165] Brogdon WG, McAllister JC: Insecticide resistance and vector control. Emerg Infect Dis 1998, 4(4):605-613.
[166] Diabate A, Baldet T, Chandre F, Akoobeto M, Guiguemde TR, Darriet F, Brengues C, Guillet P, Hemingway J, Small GJ et al: The role of agricultural use of insecticides in resistance to pyrethroids in Anopheles gambiae s.l. in Burkina Faso. Am J Trop Med Hyg 2002, 67(6):617-622.
[167] Yadouleton A, Martin T, Padonou G, Chandre F, Asidi A, Djogbenou L, Dabire R, Aikpon R, Boko M, Glitho I et al: Cotton pest management practices and the selection of pyrethroid resistance in Anopheles gambiae population in northern Benin. Parasit Vectors 2011, 4:60.
[168] Harrison G: Mosquitoes, malaria and man: A history of hostilities since 1880. !important; 1978.
[169] Read AF, Lynch PA, Thomas MB: How to make evolution-proof insecticides for malaria control. PLoS Biol 2009, 7(4):e1000058.
[170] Roush RT, Hoy CW, Ferro DN, Tingey WM: Insecticide resistance in the Colorado potato beetle (Coleoptera: Chrysomelidae): influence of crop rotation and insecticide use. Journal of Economic Entomology 1990, 83(2):315-319.
[171] Georghiou GP: Insecticide resistance and prospects for its management. Residue Reviews 1980, 76:131-145.
[172] Tabashnik BE: Managing resistance with multiple pesticide tactics: theory, evidence, and recommendations. J Econ Entomol 1989, 82(5):1263-1269.
[173] Chitnis N, Schapira A, Smith T, Steketee R: Comparing the effectiveness of malaria vector-control interventions through a mathematical model. Am J Trop Med Hyg 2010, 83(2):230-240.
Distribution, Mechanisms, Impact and Management of Insecticide Resistance in Malaria Vectors: A Pragmatic Review
[174] Yakob L, Dunning R, Yan G: Indoor residual spray and insecticide-treated bednets for malaria control: theoretical synergisms and antagonisms. J R Soc Interface 2011, 8(59):799-806.
[175] World Health Organization: Global strategic framework for integrated vector management. Geneva !important; 2004.
[176] Curtis CF: Theoretical models of the use of insecticide mixtures for management of resistance. Bull Ent Res 1985, 75: 259-265.
[177] Hougard JM, Poudiougo P, Guillet P, Back C, Akpoboua LK, Quillevere D: Criteria for the selection of larvicides by the o­ !important;nchocerciasis Control Programme in west Africa. Ann Trop Med Parasitol 1993, 87(5):435-442.
[178] WHO: Pesticides and their application for the control of vectors and pests of public health importance !important; Sixth edition. In. Edited by WHO/CDS/NTD/WHOPES/GCDPP/2006.1 WHO, Geneva; 2006: 1-125.
[179] Corbel V, Chabi J, Dabire RK, Etang J, Nwane P, Pigeon O, Akogbeto M, Hougard JM: Field efficacy of a new mosaic long-lasting mosquito net (PermaNet 3.0) against pyrethroid-resistant malaria vectors: a multi centre study in Western and Central Africa. Malar J 2010, 9:113.
[180] Killeen GF, Okumu FO, N' !important;Guessan R, Coosemans M, Adeogun A, Awolola S, Etang J, Dabire RK, Corbel V: The importance of considering community-level effects when selecting insecticidal malaria vector products. Parasit Vectors 2011, 4:160.
[181] Mani GS: Evolution of resistance in the presence of two insecticides. Genetics 1985, 109(4):761-783.
[182] Roush RT: Designing resistance management programs: how can you choose? Pesticide Science 1989, 26(4):423-441.
[183] Hougard JM, Corbel V, N' !important;Guessan R, Darriet F, Chandre F, Akogbeto M, Baldet T, Guillet P, Carnevale P, Traore-Lamizana M: Efficacy of mosquito nets treated with insecticide mixtures or mosaics against insecticide resistant Anopheles gambiae and Culex quinquefasciatus (Diptera: Culicidae) in Cote d' !important;Ivoire. Bull Entomol Res 2003, 93(6):491-498.
[184] Asidi AN, N' !important;Guessan R, Koffi AA, Curtis CF, Hougard JM, Chandre F, Corbel V, Darriet F, Zaim M, Rowland MW: Experimental hut evaluation of bednets treated with an organophosphate (chlorpyrifos-methyl) or a pyrethroid (lambdacyhalothrin) alone and in combination against insecticide-resistant Anopheles gambiae and Culex quinquefasciatus mosquitoes. Malar J 2005, 4(1):25.
[185] Ohashi K, Nakada K, Ishiwatari T, Miyaguchi J, Shono Y, Lucas JR, Mito N: Efficacy of pyriproxyfen-treated nets in sterilizing and shortening the longevity of Anopheles gambiae (Diptera: Culicidae). J Med Entomol 2012, 49(5):1052-1058.
[186] Mosqueira B, Duchon S, Chandre F, Hougard JM, Carnevale P, Mas-Coma S: Efficacy of an insecticide paint against insecticide-susceptible and resistant mosquitoes – part 1: laboratory evaluation. Malar J 2010, 9:340.
[187] Ngufor C, N' !important;Guessan R, Boko P, Odjo A, Vigninou E, Asidi A, Akogbeto M, Rowland M: Combining indoor residual spraying with chlorfenapyr and long-lasting insecticidal bed nets for improved control of pyrethroid-resistant Anopheles gambiae: an experimental hut trial in Benin. Malar J 2011, 10:343.
[188] Kleinschmidt I, Schwabe C, Shiva M, Segura JL, Sima V, Mabunda SJ, Coleman M: Combining indoor residual spraying and insecticide-treated net interventions. Am J
Trop Med Hyg 2009, 81(3):519-524.
[189] Okumu FO, Moore SJ: Combining indoor residual spraying and insecticide-treated nets for malaria control in Africa: a review of possible outcomes and an outline of suggestions for the future. Malar J 2011, 10:208.
[190] Brosseau L, Drame PM, Besnard P, Toto JC, Foumane V, Le Mire J, Mouchet F, Remoue F, Allan R, Fortes F et al: Human antibody response to Anopheles saliva for comparing the efficacy of three malaria vector control methods in Balombo, Angola. PloS o­ !important;nE 2012, 7(9):e44189.
[191] Bill_& !important;_Melinda_Gates_Fondation, Boston_Consulting_Group: Market Assessment for Public Health Pesticide Products. In.; 2007.