Home TRANG CHỦ Chủ nhật, ngày 16/06/2024
    Hỏi đáp   Diễn đàn   Sơ đồ site     Liên hệ     English
IMPE-QN
Web Sites & Commerce Giới thiệu
Web Sites & Commerce Tin tức - Sự kiện
Web Sites & Commerce Hoạt động hợp tác
Web Sites & Commerce Hoạt động đào tạo
Finance & Retail Chuyên đề
Dịch tễ học
Côn trùng học
Nghiên cứu lâm sàng & điều trị
Ký sinh trùng sốt rét
Ký sinh trùng
Sinh học phân tử
Sán lá gan
Sốt xuất huyết
Bệnh do véc tơ truyền
Vi khuẩn & Vi rút
Sán
Giun
Nấm-Đơn bào
Web Sites & Commerce Tư vấn sức khỏe
Web Sites & Commerce Tạp chí-Ấn phẩm
Web Sites & Commerce Thư viện điện tử
Web Sites & Commerce Hoạt động Đảng & Đoàn thể
Web Sites & Commerce Bạn trẻ
Web Sites & Commerce Văn bản pháp quy
Số liệu thống kê
Web Sites & Commerce An toàn thực phẩm & hóa chất
Web Sites & Commerce Thầy thuốc và Danh nhân
Web Sites & Commerce Ngành Y-Vinh dự và trách nhiệm
Web Sites & Commerce Trung tâm dịch vụ
Web Sites & Commerce Thông báo-Công khai
Web Sites & Commerce Góc thư giản

Tìm kiếm

Đăng nhập
Tên truy cập
Mật khẩu

WEBLINKS
Website liên kết khác
 
 
Số lượt truy cập:
5 2 9 2 5 1 6 1
Số người đang truy cập
1 6 2
 Chuyên đề Ký sinh trùng sốt rét
Sốt rét do Plasmodium vivax: Thách thức tiềm tàng đe doạ lộ trình loại trừ & tiêu diệt sốt rét (Phần 5 và Hết)

Tiếp theo Phần 4

KẾT LUẬN VÀ HƯỚNG PHÁT TRIỂN TRONG TƯƠNG LAI

Các biện pháp phòng chống như điều trị toàn dân (MDA), sàng lọc, phát triển vaccine, phòng chống vector và các chiến lược điều trị không thể ảnh hưởng đến P. vivax như đã từng đối với P. falciparum. Hơn nữa, do thiếu một biện pháp nuôi cấy liên tục trên in vitro có thể duy trì chu kỳ hồng cầu của ký sinh trùng, nên nghiên cứu về P. vivax ít được quan tâm hơn so với P. falciparum, điều này đã trở thành một thách thức lớn.

Nhìn chung, dự báo sẽ không có cơ hội thực sự để tiêu diệt hoàn toàn loài ký sinh trùng này trong vài năm tới, trừ khi cócông cụ mới để giảm sự lan truyền sốt rét được phát triển (tức là loại trừ và tiêu diệt sốt rét).

Do đó, những gì sẽ xảy ra tiếp theo trong việc phòng chống và LTSR do P. vivax gây ra? Chiến lược phòng vệ của ký sinh trùng trong tương lai sẽ như thế nào?Nghiên cứu về ký sinh trùng Plasmodium sẽ được hưởng lợi từ các phương pháp luận có hệ thống, đồng thời sẽ giúp cải thiện đáng kể trong cuộc chiến chống lại sốt rét. Bằng cách sử dụng các công cụ giải trình tự toàn bộ hệ gen, hiểu biết của chúng ta về khía cạnh sinh học của Plasmodium được mở rộng và mở ra những con đường nghiên cứu mới (như "omics").

Lĩnh vực "omics" có tiềm năng giải thích một số vấn đề sinh học. Lĩnh vực này giúp chúng ta hiểu được sinh học của Plasmodium spp., đặc biệt là sự biến động của sự biểu hiện và điều tiết RNA và protein trong suốt chu kỳ phức tạp và đa giai đoạn của nó, trong bối cảnh tương tác với vật chủ-vector và dưới áp lực chọn lọc môi trường đa dạng. Phương pháp "Omics" này sẽ cung cấp kiến thức toàn diện về các thành phần tế bào và các phân tử sinh học, chẳng hạn như gen (genomic và epigenomic), RNA (transcriptomics), protein (proteomics) và chất chuyển hóa (metabolomics), đối với sự biến đổi mạng sinh học.

(1) Bộ gen và Di truyền học biểu sinh (Genomes & Epigenomes):

Một lĩnh vực nghiên cứu quan trọng trong sinh học hệ gen của Plasmodium, là xác định các gen tiến hóa dưới chiều hướng chọn lọc ưa thích các alen mới hoặc duy trì sự đa dạng trong quần thể. Epigenomes (di truyền học biểu sinh) giúp hiểu biết về sự điều hoà quá trình phiên mã.

Giải trình tự toàn bộ hệ gen cho phép khám phá một cách đầy đủ hơn về cấu trúc bộ gen của một sinh vật, khám phá các kháng nguyên bảo vệ. Việc có sẵn các chuỗi trình tự hệ gen Plasmodium chính đã cải thiện hiểu biết về các yếu tố của cả vật chủ và KSTSR, đóng góp vào sự nhiễm bệnh và cho phép xác định các mục tiêu điều trị tiềm năng bằng cách kết hợp chúng với các mô hình nhiễm bệnh trên động vật để hiểu về sự điều hoà quá trình phiên mã và cách sử dụng dữ liệu epigenomes.

(2) Công nghệ phiên mã P. vivax (P. vivax transcriptomes): 

Nghiên cứu về phiên mã của P. vivax để xác định trạng thái ổn định của mRNA có thể cung cấp cái nhìn đặc biệt về sinh học của KST này và sự khác biệt so với P. falciparum. Hơn nữa, một nghiên cứu bởi Muller và cộng sự đã phát hiện ra rằng một số bản phiên mã liên quan đến sự nhiễm bệnh sớm của vật chủ có xương sống có thể không được nhận ra ngay lập tức là protein và có thể bị tác động bởi sự ức chế dịch mã.


Hình 14. Ứng dụng các tiến bộ trong Multi-Omics vào chẩn đoán và phân biệt thể ngủ P. vivax 
https://smart.servier.com (accessed o­n 20 March 2021).

(3)Nghiên cứu phát hiện ra những  thay đổi trong biểu hiện gen ở mức dịch mã có liên quan& các protein tiết từ ký sinh trùng trong huyết tương (Proteomes of parasite particles and parasite-secreted proteins in plasma):

Theo một nghiên cứu đã tạo ra một lượng protein KST quan trọng có thể sử dụng cho mục đích chẩn đoán. Proteomic cũng có thể kiểm tra đồng thời proteomes và subproteomes mà không cần thông tin loại protein nào. Một lượng protein của KST lớn có thể giúp khai thác để phát triển chẩn đoán thông qua các phân tử của KST và các protein tiết từ ký sinh trùngtrong huyết tương. Proteomics cũng cung cấp lợi thế lớn trong việc tìm kiếm các phân tử sinh học đích mới vì nó có thể đồng thời phân tích proteomes và subproteomes mà không cần biết loại protein liên quan.

Cũng có nhiều tiềm năng trong việc nghiên cứu biểu hiện, tương tác và biến đổi protein. Ngoài ra, nghiên cứu đã phát hiện ra 153 protein từ giai đoạn máu của P. vivax. Một phát hiện đáng chú ý là hơn 36% proteomes của ký sinh trùng được tạo thành từ các protein giả thuyết (hypothetical proteins).

(4) Nghiên cứu về hệ thống tương tác và trao đổi chất (Interactomes & Metabolomics):

Sử dụng hệ thống tương tác protein và trao đổi chất để hiểu cách tương tác protein-protein hoạt động và với sự phát triển của cơ chế trao đổi chất, ta có thể nghiên cứu các chất chuyển hóa dễ dàng hơn và dự đoán sự kháng thuốc CQ của bệnh nhân nhiễm bằng cách tìm chuỗi các phản ứng hoá sinh và chất chuyển hóa đã thay đổi nhiều. Những nghiên cứu này sẽ đưa ra hướng đi quan trọng cho việc tiêu diệt và LTSR.

Hơn nữa, kiến thức về sinh học phân tử sẽ hỗ trợ việc phát triển các xét nghiệm chẩn đoán nhanh để chẩn đoán, phát triển thuốc, giám sát kháng thuốc và nghiên cứu cải tiến trong sản xuất vaccine phòng sốt rét. Nói chung, sẽ cần phải có các biện mới để LTSRP. vivax, điều này đòi hỏi tạo ra các sản phẩm có giá trị cao, kể cả việc tiêm chủng để ngăn chặn lan truyền, kết hợp thuốc mới để điều trị chủng kháng CQ và một loại 8-aminoquinoline an toàn, bền vững, lâu dài.


Hình 15. Từ chu kỳ sinh học đến cơ chế bệnh sinh sốt rét phức tạp

CHIẾN LƯỢC TÌM KIẾM Y VĂN

Bài báo cáo đánh giá này dựa trên việc nghiên cứu tài liệu được công bố về sốt rét P. vivax và bệnh sốt rét nói chung. Việc tìm kiếm tài liệu trên cơ sở dữ liệu công cộng trực tuyến như PubMed, Google Scholar, ScienceDirect, Web of Science và các tạp chí có liên quan khác đã công bố những bài đánh giá về P. vivax.

Các nghiên cứu liên quan đến P. vivax đã được tiến hành và lưu trữ trong những cơ sở dữ liệu, các bài báo nghiên cứu gốc và bài đánh giá đã được sử dụng trong tất cả nghiên cứu được nêu trong bài tổng quan hệ thống này đã được công bố bằng tiếng Anh. Các bài báo trùng lặp không được xem xét trong bài tổng quan hệ thống này.

MỘT SỐ THUẬT NGỮ

Duffy blood group antigen: Kháng nguyên nhóm máu Duffyhay còn được gọi là Duffy Antigen Receptor for Chemokines (DARC) đóng vai trò không chỉ là kháng nguyên cho phản ứng huyết thanh của một nhóm máu, nó còn đóng vai trò là thụ thể cho các chemokine tiền viêm và là thụ thể cho sự xâm nhập của P. vivax vào hồng cầu. Một đột biến điểm xảy ra trong vùng promoter của gen Duffy làm gián đoạn việc gắn kết một yếu tố phiên mã, dẫn đến không biểu hiện kháng nguyên này trên bề mặt hồng cầu. Kiểu hình âm tính Duffy (Duffy negative) này được phát hiện chiếm phổ biến trong quần thể người châu Phi. Đột biến này là một đột biến có lợi giúp cho người mang kiểu hình Fy(a-b) này khó bị nhiễm sốt rét P. vivax hơn.

Inoculum size: Mật độ chủng vào là mật độ/nồng độ cần có của các vi sinh vật để sử dụng cho một thử nghiệm tiêu chuẩn

Methemoglobinemia (MetHb): Là hội chứng máu hiếm gặp, trong đó oxy được chuyển đến tế bào rất ít lượng MetHb trong máu tăng bất thường. Người mắc hội chứng này có da, móng tay chân hoặc môi có màu xanh hoặc tím bất thường.

Subpatent: Nhiễm sốt rét dưới ngưỡng phát hiện của kính hiển vi hoặc RDT tiêu chuẩn.

(Hết)


TÀI LIỆU THAM KHẢO

1.Abate A, Bouyssou I, Mabilotte S, Doderer-Lang C, Dembele L, Golassa L. Vivax malaria in Duffy-negative patients shows invariably low asexual parasitaemia: implication towards malaria control in Ethiopia. Malar J. 2022;21:1-10.

2.Abkallo HM, Tangena J-A, Tang J, Kobayashi N, Inoue M, Zoungrana A, Colegrave N, Culleton R. Within-host competition does not select for virulence in malaria parasites; studies with Plasmodium yoelii. PLoS Pathog. 2015;11:e1004628.

3.Abreha T, Hwang J, Thriemer K, Tadesse Y, Girma S, Melaku Z, Assef A, Kassa M, Chatfield MD, Landman KZ. Comparison of artemether-lumefantrine and chloroquine with and without primaquine for the treatment of Plasmodium vivax infection in Ethiopia: A randomized controlled trial. PLoS Med. 2017;14:e1002299.

4.Acharya P, Pallavi R, Chandran S, Acharya J, Middha S, Kochar S, Kochar D. Clinical proteomics of the neglected human malarial parasite Plasmodium vivax. PLoS o­ne. 2011;6:e26623.

5.Adams JH, Mueller I. The biology of Plasmodium vivax. Cold Spring Harb Perspect Med. 2017;7(9):a025585. 

6.Adapa SR, Taylor RA, Wang C, Thomson-Luque R, Johnson LR, Jiang RHY. Plasmodium vivax readiness to transmit: implication for malaria eradication. BMC Syst Biol. 2019;13:5.

7.Aggarwal S, Peng WK, Srivastava S. Multiomics advancements towards Plasmodium vivax malaria diagnosis. Diagnostics (Basel). 2021;11(12):2222.

8.Ahmad SS, Rahi M, Sharma A. Relapses of Plasmodium vivax malaria threaten disease elimination: time to deploy tafenoquine in India? BMJ Glob Health. 2021;6:e004558.

9.Almeida AC, Kuehn A, Castro AJ, Brito MA, Sampaio VS, Bassat Q, Felger I. High proportions of asymptomatic and submicroscopic Plasmodium vivax infections in a peri-urban area of low transmission in the Brazilian Amazon. Parasit Vectors. 2018;11:1-13.

10.Almeida GG, Costa PAC, Araujo MdS, Gomes GR, Carvalho AF, Figueiredo MM, Pereira DB, Tada MS, Medeiros JF, Soares IdS. Asymptomatic Plasmodium vivax malaria in the Brazilian Amazon: Submicroscopic parasitemic blood infects Nyssorhynchus darlingi. PLoS Neglected Trop Dis. 2021;15:e0009077.

11.Angrisano F, Robinson LJ. Plasmodium vivax: How hidden reservoirs hinder global malaria elimination. Parasitol Int. 2022;87:102526.

12.Arévalo-Pinzón G, Bermúdez M, Hernández D, Curtidor H, Patarroyo MA. Plasmodium vivax ligand-receptor interaction: PvAMA-1 domain I contains the minimal regions for specific interaction with CD71+ reticulocytes. Sci Rep. 2017;7:1-13.

13.Arnott A, Mueller I, Ramsland PA, Siba PM, Reeder JC, Barry AE. Global population structure of the genes encoding the malaria vaccine candidate, Plasmodium vivax apical membrane antigen 1 (Pv AMA1). PLoS Negl Trop Dis. 2013;7:e2506.

14.Arora N, Anbalagan LC, Pannu AK. Towards eradication of malaria: is the WHO’s RTS, S/AS01 vaccination effective enough? Risk Manag Healthcare Policy. 2021;14:1033.

15.Asih PB, Syafruddin D, Baird JK. Challenges in the control and elimination of Plasmodium vivax malaria. In: Towards malaria elimination-A leap forward. IntechOpen; 2018.

16.Assemie A. Malaria prevalence and distribution of plasmodium species in Southern Region of Ethiopia. J Parasitol Res. 2022;2022:5665660.

17.Auburn S, Cheng Q, Marfurt J, Price RN. The changing epidemiology of Plasmodium vivax: insights from conventional and novel surveillance tools. PLoS Med. 2021;18:e1003560.

18.Auburn S, Getachew S, Pearson RD, Amato R, Miotto O, Trimarsanto H, Zhu SJ, Rumaseb A, Marfurt J, Noviyanti R, et al. Genomic analysis of Plasmodium vivax in Southern Ethiopia reveals selective pressures in multiple parasite mechanisms. J Infect Dis. 2019;220:1738–49.

19.Badmos AO, Alaran AJ, Adebisi YA, Lin X, Lucero-Prisno DE. What sub-Saharan African countries can learn from malaria elimination in China. Trop Med Health. 2021;49:86.

20.Baird JK. 8-Aminoquinoline therapy for latent malaria. Clin Microbiol Rev. 2019 Jul 31;32(4):e00011–19. https://doi.org/10.1128/CMR.00011-19.

21.Baird, J.K. (2022). African Plasmodium vivax malaria improbably rare or benign. Trends in Parasitology.

22.Baird JK, Valecha N, Duparc S, White NJ, Price RN. Diagnosis and treatment of Plasmodium vivax malaria. Am J Trop Med Hyg. 2016;95:35-51.

23.Bantuchai S, Imad H, Nguitragool W. Plasmodium vivax gametocytes and transmission. Parasitol Int. 2022;87:102497.

24.Barber BE, Rajahram GS, Anstey NM. World Malaria Report: Time to acknowledge Plasmodium knowlesi malaria. Malar J. 2017;6:1-3.

25.Bassat Q, Velarde M, Mueller I, Lin J, Leslie T, Wongsrichanalai C, Baird JK. Key knowledge gaps for Plasmodium vivax control and elimination. Am J Trop Med Hyg. 2016;95:62.

26.Basso LG, Rodrigues RZ, Naal RM, Costa-Filho AJ. Effects of the antimalarial drug primaquine o­n the dynamic structure of lipid model membranes. Biochim Biophys Acta. 2011;1808:55-64.

27.Battle KE, Baird JK. The global burden of Plasmodium vivax malaria is obscure and insidious. PLoS Med. 2021;18:e1003799.

28.Blanford JI, Blanford S, Crane RG, Mann ME, Paaijmans KP, Schreiber KV, Thomas MB. Implications of temperature variation for malaria parasite development across Africa. Sci Rep. 2013;3:1–11.

29.Edith Christiane B, Sodiomon Bienvenu S. Inherited disorders of hemoglobin and Plasmodium falciparum malaria. In: Osaro E, Anjana M, editors. Human blood group systems and haemoglobinopathies. Rijeka: IntechOpen: 2020. p. Ch. 1.

30.Bourgard C, Albrecht L, Kayano A, Sunnerhagen P, Costa FTM. Plasmodium vivax biology: insights provided by genomics, transcriptomics and proteomics. Front Cell Infect Microbiol. 2018;8:34.

31.Braga CB, Martins AC, da Silva AF, de Souza MN, Andrade BW, Filgueira-Júnior JA, Pinto Wde J, et al. Side effects of chloroquine and primaquine and symptom reduction in malaria endemic area (Mâncio Lima, Acre, Brazil). Interdiscip Perspect Infect Dis. 2015;2015:346853.

32.Briquet S, Marinach C, Silvie O, Vaquero C. Preparing for transmission: gene regulation in plasmodium sporozoites. Front Cell Infect Microbiol. 2020;10:618430.

33.Bykersma A. The new zoonotic malaria: Plasmodium cynomolgi. Trop Med Infect Dis. 2021;6:46.

34.Bylicka-Szczepanowska E, Korzeniewski K. Asymptomatic malaria infections in the time of COVID-19 Pandemic: experience from the Central African Republic. Int J Environ Res Public Health. 2022;19(6):3544.

35.Camarda G, Jirawatcharadech P, Priestley RS, Saif A, Leung S, Alano P. Antimalarial activity of primaquine operates via a two-step biochemical relay. Nat Commun. 2019;10:1-9.

36.Camargo-Ayala PA, Garzón-Ospina D, Noya O, Patarroyo MA. o­n the evolution and function of Plasmodium vivax reticulocyte binding surface antigen (pvrbsa). Front Genet. 2018;9:372.

37.Capela R, Moreira R, Lopes F. An overview of drug resistance in protozoal diseases. Int J Mol Sci. 2019;20:5748.

38.Caputo A, Garavelli PL. Climate, environment and transmission of malaria. Infez Med. 2016;2:93–104.

39.Carvalho BO, Lopes SC, Nogueira PA, Orlandi PP, Mamoni R, Leite JA, Rodrigues MM, Soares IS. o­n the cytoadhesion of Plasmodium vivaxinfected erythrocytes. J Infect Dis. 2010;202:638–47.

40.Chan LJ, Dietrich MH, Nguitragool W, Tham WH. Plasmodium vivax reticulocyte binding proteins for invasion into reticulocytes. Cell Microbiol. 2020;22:e13110.

41.Chu CS, White NJ. The prevention and treatment of Plasmodium vivax malaria. PLoS Med. 2021;18:e1003561.

42.Clark MA, Kanjee U, Rangel GW, Chery L, Brugnara C, Ferreira MU, Duraisingh MT. Plasmodium vivax infection compromises reticulocyte stability. Nat Commun. 2021;12:1629.

43.Commons RJ, Simpson JA, Thriemer K, Añez A, Anstey NM, Awab GR, Baird JK. The effect of chloroquine dose and primaquine o­n Plasmodium vivax recurrence: A WorldWide Antimalarial Resistance Network systematic review and individual patient pooled meta-analysis. Lancet Infect Dis. 2018;18:1025–34.

44.Conn JE, Grillet, ME, Correa M, Sallum MAM. (2018). Malaria transmission in South America: Present status and prospects for elimination. Towards malaria elimination: A leap forward London: InTech, 281–313.

45.Corder RM, de Lima AC, Khoury DS, Docken SS, Davenport MP, Ferreira MU. Quantifying and preventing Plasmodium vivax recurrences in primaquine-untreated pregnant women: An observational and modeling study in Brazil. PLoS Negl Trop Dis. 2020;14:e0008526.

46.Cui L, et al. Elimination of Plasmodium vivax malaria: problems and solutions. In: Rodriguez-Morales AJ, editor. Current topics and emerging issues in malaria elimination. London: IntechOpen; 2021. 

47.D’Souza J, Nderitu D. Ethical considerations for introducing RTS, S/AS01 in countries with moderate to high Plasmodium falciparum malaria transmission. Lancet Glob Health. 2021;9:e1642–3.

48.Daniels RF, Rice BL, Daniels NM, Volkman SK, Hartl DL. The utility of genomic data for Plasmodium vivax population surveillance. Pathogens Global Health. 2015;109:153–61.

49.de Jong RM, Tebeje SK, Meerstein-Kessel L, Tadesse FG, Jore MM, Stone W, Bousema T. Immunity against sexual stage P. falciparum and P. vivax parasites. Immunol Rev. 2020;293:190-215.

50.de Pina-Costa A, Silvino ACR, Dos Santos EM, Daniel-Ribeiro CT. Increased primaquine total dose prevents Plasmodium vivax relapses in patients with impaired CYP2D6 activity: Report of three cases. Malar J. 2021;20:1-6.

51.De SL, Ntumngia FB, Nicholas J, Adams JH. Progress towards the development of a Plasmodium vivax vaccine. Expert Rev Vaccines. 2021;20:97-112.

52.Devine A, Parmiter M, Chu CS, Bancone G, Nosten F, Price RN, Lubell Y, Yeung S. Using G6PD tests to enable the safe treatment of Plasmodium vivax infections with primaquine o­n the Thailand-Myanmar border: a cost-effectiveness analysis. PLoS Negl Trop Dis. 2017;11:e0005602.

53.Diez Benavente E, Ward Z, Chan W, Mohareb FR, Sutherland CJ, Roper C, Campino S, Clark TG. Genomic variation in Plasmodium vivax malaria reveals regions under selective pressure. PLoS o­ne. 2017;12:e0177134.

54.Ding XC, Ade MP, Baird JK, Cheng Q, Cunningham J, Dhorda M, Gamboa D, Harbers M. Defining the next generation of Plasmodium vivax diagnostic tests for control and elimination: target product profiles. PLoS Negl Trop Dis. 2017;11:e0005516.

55.Domingo GJ, Satyagraha AW, Anvikar A, Baird K, Bancone G, Culpepper J, Eziefula C, et al. G6PD testing in support of treatment and elimination of malaria: recommendations for evaluation of G6PD tests. Malar J. 2013;12:391.

56.Douglas NM, Anstey NM, Angus BJ, Nosten F, Price RN. Artemisinin combination therapy for vivax malaria. Lancet Infect Dis. 2010;10:405-16.

57.Duah NO, Matrevi SA, Quashie NB, Abuaku B, Koram KA. Genetic diversity of Plasmodium falciparum isolates from uncomplicated malaria cases in Ghana over a decade. Parasit Vectors. 2016;9:416.

58.Duffy PE, Acharya P, Oleinikov AV. (2014). Journal: Encyclopedia of Malaria, 2014, 1-13.

59.Durnez L, Coosemans M. Residual transmission of malaria: an old issue for new approaches. In: Anopheles mosquitoes: new insights into malaria vectors/Manguin, Sylvie; 2013. p.671-704.

60.Engel N, Ghergu C, Matin MA, Kibria MG, Thriemer K, Price RN, Ding XC, Howes RE, Ley B, Incardona S. Implementing radical cure diagnostics for malaria: User perspectives o­n G6PD testing in Bangladesh. Malar J. 2021;20:1–12.

61.Escalante AA, Cepeda AS, Pacheco MA. Why Plasmodium vivax and Plasmodium falciparum are so different? A tale of two clades and their species diversities. Malar J. 2022;21:1-19.

62.Fernandez-Becerra C, Bernabeu M, Castellanos A, Rui E, Ayllon-Hermida A. Plasmodium vivax spleen-dependent genes encode antigens associated with cytoadhesion and clinical protection. Proc Natl Acad Sci. 2020;117:13056–65.

63.Ferreira MU, Corder RM, Johansen IC, Llanos-Cuentas A, Gamboa D. Relative contribution of low-density and asymptomatic infections to Plasmodium vivax transmission in the Amazon: pooled analysis of individual participant data from population-based cross-sectional surveys. Lancet Regional Health-Americas. 2022;9:100169.

64.Ferreira MU, de Oliveira TC. Challenges for Plasmodium vivax malaria elimination in the genomics era. Pathogens Glob Health. 2015;109:89-90.

65.Ferreira MU, Gamboa D, Torres K, Rodriguez-Ferrucci H, Tomko SS, Gazzinelli RT, Conn JE. Evidence-based malaria control and elimination in the Amazon: Input from the International Center of excellence in malaria research network in Peru and Brazil. Am J Trop Med Hyg. 2022;107:160-7.

66.Ferreira MU, Nobrega de Sousa T, Rangel GW, Johansen IC, Corder RM, Ladeia-Andrade S, Gil JP. Monitoring Plasmodium vivax resistance to antimalarials: Persisting challenges and future directions. Int J Parasitol Drugs Drug Resist. 2021;15:9-24.

67.File T, Dinka H, Golassa L. A retrospective analysis o­n the transmission of Plasmodium falciparum and Plasmodium vivax: the case of Adama City, East Shoa Zone, Oromia. Ethiopia Malaria Journal. 2019;18:193.

68.Finney M, McKenzie BA, Rabaovola B, Sutcliffe A, Dotson E, Zohdy S. Widespread zoophagy and detection of Plasmodium spp. in Anopheles mosquitoes in southeastern Madagascar. Malar J. 2021;20:1–12.

69.Fischer L, Gültekin N, Kaelin MB, Fehr J, Schlagenhauf P. Rising temperature and its impact o­n receptivity to malaria transmission in Europe: a systematic review. Travel Med Infect Dis. 2020;36:101815.

70.Fontoura PS, Finco BF, Lima NF, de Carvalho Jr JF, Vinetz JM, Castro MC, Ferreira MU. Reactive case detection for P. vivax malaria elimination in rural Amazonia. PLoS Negl Trop Dis. 2016;10:e0005221.

71.Gari T, Solomon T, Lindtjørn B. Older children are at increased risk of Plasmodium vivax in south-central Ethiopia: a cohort study. Malar J. 2021;20:251.

72.Garzón-Ospina D, Buitrago SP, Ramos AE, Patarroyo MA. Identifying potential Plasmodium vivax sporozoite stage vaccine candidates: An analysis of genetic diversity and natural selection. Front Genet. 2018;9:10.

73.Gilder ME, Hoglund RM, Tarning J, Bancone G, Carrara VI. Primaquine pharmacokinetics in lactating women and breastfed infant exposures. Clin Infect Dis. 2018;67:1000-7.

74.Giovanella F, Ferreira GK, PRÁ SDD, Carvalho-Silva M, Gomes LM, Scaini G, Michels M, Galant LS, Longaretti LM. Effects of primaquine and chloroquine o­n oxidative stress parameters in rats. An Acad Bras Cienc. 2015;87:1487-96.

75.Golassa L, Amenga-Etego L, Lo E, Amambua-Ngwa A. The biology of unconventional invasion of Duffy-negative reticulocytes by Plasmodium vivax and its implication in malaria epidemiology and public health. Malar J. 2020;19:1-10.

76.Gopi G, Behera SM, Behera P. Tafenoquine: A breakthrough drug for radical cure and elimination of Malaria. Exploratory Res Hypothesis Med. 2019;4:29-34.

77.Grillet ME, Moreno JE, Hernández-Villena JV, Vincenti-González MF, Llewellyn M, Lowe R, Escalante AA. Malaria in Southern Venezuela: The hottest hotspot in Latin America. PLoS Negl Trop Dis. 2021;15:e0008211.

78.Gualdrón-López M, Flannery EL, Fernandez-Orth D, Lacerda MV. Characterization of Plasmodium vivax proteins in plasma-derived exosomes from malaria-infected liver-chimeric humanized mice. Front Microbiol. 2018;9:1271.

79.Gunalan K, Niangaly A, Thera MA, Doumbo OK, Miller LH. P. vivax infections of Duffy-negative erythrocytes: Historically undetected or a recent adaptation? Trends Parasitol. 2018;34:420-9.

80.Gupta S, Singh S, Popovici J, Roesch C, Shakri AR, Guillotte-Blisnick M, Menard D, Chitnis CE. Targeting a reticulocyte binding protein and Duffy binding protein to inhibit reticulocyte invasion by Plasmodium vivax. Sci Rep. 2018;8:10511.

81.Gural N, Mancio-Silva L, Miller AB, Galstian A, Desai SP, Mikolajczak SA, Kappe SH. In vitro culture, drug sensitivity and transcriptome of Plasmodium vivax hypnozoites. Cell Host Microbe. 2018;23(395-406):e394.

82.Haileselassie W, Parker DM, Taye B, David RE, Zemene E, Alemu T, Tadele G. Burden of malaria, impact of interventions and climate variability in Western Ethiopia: an area with large irrigation based farming. BMC Public Health. 2022;22:1–11.

83.Haiyambo DH, Aleksenko L, Mumbengegwi D, Bock R, Uusiku P, Malleret B, Rénia L, Quaye IK. Children with Plasmodium vivax infection previously observed in Namibia, were Duffy negative and carried a c. 136G> A mutation. BMC Infect Dis. 2021;21:1-6.

84.Hammer H, Schmidt F, Marx-Stoelting P, Pötz O, Braeuning A. Cross-species analysis of hepatic cytochrome P450 and transport protein expression. Arch Toxicol. 2021;95:117-33.

85.Hanboonkunupakarn B, White NJ. Advances and roadblocks in the treatment of malaria. Br J Clin Pharmacol. 2022;88:374–82.

86.He W-Q, Karl S, White MT, Nguitragool W, Lacerda MV. Antibodies to P. vivax reticulocyte binding protein 2b are associated with protection against Plasmodium vivax malaria in populations living in low malaria transmission regions of Brazil and Thailand. PLoS Negl Trop Dis. 2019;13:e0007596.

87.Heidari A, Keshavarz H. The drug resistance of P.falciparum and P.vivax in Iran: A review article. Iran J Parasitol. 2021;16:173.

88.Hemingway J, Shretta R, Wells TN, Qi G. Tools and strategies for malaria control and elimination: what do we need to achieve a grand convergence in malaria? PLoS Biol. 2016;14:e1002380.

89.Hounkpatin AB, Kreidenweiss A, Held J. Clinical utility of tafenoquine in the prevention of relapse of Plasmodium vivax malaria: A review o­n the mode of action and emerging trial data. Infect Drug Resist. 2019;12:553–70.

90.Howes RE, Battle KE, Mendis KN, Smith DL, Cibulskis RE, Baird JK, Hay SI. Global Epidemiology of Plasmodium vivax. Am J Trop Med Hyg. 2016;95:15–34.

91.Huang F, Li S, Tian P, Pu LJS, Cui Y, Liu H, Bi DY. Genetic polymorphisms in genes associated with drug resistance in Plasmodium vivax parasites from northeastern Myanmar. Malar J. 2022;21:66.

92.Huber JH, Koepfli C, España G, Nekkab N, Alex Perkins T. How radical is radical cure? Site-specific biases in clinical trials underestimate the effect of radical cure o­n P. vivax hypnozoites. Malar J. 2021;20:1-15.

93.Ippolito MM, Moser KA, Kabuya J-BB, Cunningham C, Juliano JJ. Antimalarial drug resistance and implications for the WHO global technical strategy. Curr Epidemiol Rep. 2021;8:46-62.

94.Jennison C, Arnott A, Tessier N, Tavul L, Koepfli C, Felger I, Siba PM, Mueller I. P. vivax populations are more genetically diverse and less structured than sympatric P.falciparum populations. PLoS Negl Trop Dis. 2015;9:e0003634.

95.Kanjee U, Rangel GW, Clark MA, Duraisingh MT. Molecular and cellular interactions defining the tropism of Plasmodium vivax for reticulocytes. Curr Opin Microbiol. 2018;46:109–15.

96.Kepple D, Ford A, Little E, Kolesar G, Abagero BR, Blackwell AN, De Silva Indrasekara S, Yewhalaw D, Lo E. From Genes to Biomarkers: Understanding the biology of malaria gametocytes and their detection. In: Çalışkan M, editor. Genetic polymorphisms-New insights. London: IntechOpen; 2021.

97.Kepple D, Pestana K, Tomida J, Abebe A, Golassa L, Lo E. Alternative invasion mechanisms and host immune response to Plasmodium vivax malaria:Trends and future directions. Microorganisms. 2021;9:15.

98.Khammanee T, Sawangjaroen N, Buncherd H, Tun AW, Thanapongpichat S. Prevalence of Glucose-6-Phosphate Dehydrogenase (G6PD) deficiency among malaria patients in Southern Thailand: 8 years retrospective study. Korean J Parasitol. 2022;60:15.

99.Kitchakarn S, Lek D, Thol S, Hok C, Saejeng A, Huy R, Chinanonwait N. Implementation of G6PD testing and primaquine for Plasmodium vivax radical cure: operational perspectives from Thailand and Cambodia. WHO South East Asia J Public Health. 2017;6:60-8.

100.Koepfli C, Nguitragool W, Ome-Kaius M, Kazura J. Identification of the asymptomatic  gametocyte reservoir under different transmission intensities. P. falciparum and P. vivaxS Negl Trop Dis. 2021;15:e0009672.

101.Lacerda MVG, Llanos-Cuentas A, Krudsood S, Batista Pereira D, Espino FEJ, Mia RZ, et al. Single-dose tafenoquine to prevent relapse of P. vivax malaria. N Engl J Med. 2019;380:215-28.

102.Laporta GZ, Ilacqua RC, Bergo ES, Chaves LS, Massad E, Bickersmith SA. Malaria transmission in landscapes with varying deforestation levels and timelines in the Amazon: A longitudinal spatiotemporal study. Sci Rep. 2021;11:1-14.

103.Larson B. Origin of two most virulent agents of human malaria: P. falciparum and P. vivax. In: Fyson HK, editor. Malaria. Rijeka: IntechOpen; 2019. p.Ch.1.

104.Lindblade KA, Steinhardt L, Samuels A, Kachur SP, Slutsker L. The silent threat: Asymptomatic parasitemia and malaria transmission. Expert Rev Anti Infect Ther. 2013;11:623-39.

105.Lee W-C, Cheong FW, Amir A, Lai MY, Tan JH, Phang WK, Shahari S, Lau Y-L. Plasmodium knowlesi: The game changer for malaria eradication. Malar J. 2022;21:1–24.

106.Lee W-C, Russell B, Rénia L. Sticking for a cause: The falciparum malaria parasites cytoadherence paradigm. Front Immunol. 2019;10:1444.

107.Lempang MEP, Dewayanti FK, Syahrani L, Permana DH, Malaka R, Asih PBS, Syafruddin D. Primate malaria: An emerging challenge of zoonotic malaria in Indonesia. One Health (Amsterdam, Netherlands). 2022;14:100389.

108.Leong YW, Lee EQH, Rénia L, Malleret B. Rodent malaria erythrocyte preference assessment by an Ex vivo tropism assay. Front Cell Infect Microbiol. 2021;11:680136.

109.Ley B, Thriemer K, Jaswal J, Poirot E, Alam MS, Phru CS, Khan WA et al. Barriers to routine G6PD testing prior to treatment with primaquine. Malar J. 2017;16:329.

110.Lingani M, Zango SH, Valéa I, Sanou M, Ouoba S, Samadoulougou S, Robert A, Tinto H, Dramaix M, Donnen P. Prevalence and risk factors of malaria among first antenatal care attendees in rural Burkina Faso. Trop Med Health. 2022;50:1-8.

111.Llanos-Cuentas A, Manrrique P, Rosas-Aguirre A, Herrera S, Hsiang MS. Tafenoquine for the treatment of P. vivax malaria. Expert Opin Pharmacother. 2022;23:759-68.

112.Lo E, Russo G, Pestana K, Kepple D, Abagero BR, Dongho GBD, Hamid MMA, Yewhalaw D. Contrasting epidemiology and genetic variation of P.vivax infecting Duffy-negative individuals across Africa. Int J Infect Dis. 2021;108:63-71.

113.Lo E, Zhong D, Raya B, Pestana K, Koepfli C, Yan G. Prevalence and distribution of G6PD deficiency: Implication for the use of primaquine in malaria treatment in Ethiopia. Malar J. 2019;18:1-10.

114.Lo E, Zhou G, Oo W, Afrane Y, Githeko A, Yan G. Low parasitemia in submicroscopic infections significantly impacts malaria diagnostic sensitivity in the highlands of Western Kenya. PLoS o­ne. 2015;10:e0121763.

115.Loeffel M, Ross A. The relative impact of interventions o­n sympatric Plasmodium vivax and P. falciparum malaria: A systematic review. PLoS Negl Trop Dis. 2022;16:e0010541.

116.Luo Z, Sullivan SA, Carlton JM. The biology of P. vivax explored through genomics. Ann N Y Acad Sci. 2015;1342:53-61.

117.Lyon B, Dinku T, Raman A, Thomson MC. Temperature suitability for malaria climbing the Ethiopian Highlands. Environ Res Lett. 2017;12:064015.

118.Mac Donald-Ottevanger MS, Adhin MR, Jitan JK, Bretas G, Vreden SG. Primaquine double dose for 7 days is inferior to single-dose treatment for 14 days in preventing Plasmodium vivax recurrent episodes in Suriname. Infect Drug Resist. 2018;11:3–8.

119.Magliocco G, Desmeules J, Matthey A, Quirós-Guerrero LM, Queiroz EF, Wolfender JL, Gloor Y. Metabolomics reveals biomarkers in human urine and plasma to predict cytochrome P450 2D6 (CYP2D6) activity. Br J Pharmacol. 2021;178:4708–25.

120.Malleret B, Li A, Zhang R, Tan KS, Suwanarusk R, Claser C, Cho JS, Koh EGL, Chu CS, Pukrittayakamee S. Plasmodium vivax: restricted tropism and rapid remodeling of CD71-positive reticulocytes. Blood. 2015;125:1314-24.

121.Malvy D, Torrentino-Madamet M, l'Ollivier C, Piarroux R, Millet P, Pradines B. P.falciparum recrudescence two years after treatment of an uncomplicated infection without return to an area where malaria is endemic. Antimicrob Agents Chemother. 2018;62:e01892-01817.

122.Marcsisin SR, Reichard G, Pybus BS. Primaquine pharmacology in the context of CYP 2D6 pharmacogenomics: current state of the art. Pharmacol Ther. 2016;161:1-10.

123.Marín-Menéndez A, Bardají A, Lacerda MV, Ortiz J, Cisteró P, Piqueras M, Felger I, Müeller I. Rosetting in P. vivax: A cytoadhesion phenotype associated with anaemia. PLoS Negl Trop Dis. 2013;7:e2155.

124.Mehlotra RK, Gaedigk A, Howes RE, Rakotomanga TA, Zimmerman PA. CYP2D6 genetic variation and its implication for vivax malaria treatment in Madagascar. Front Pharmacol. 2021;12:654054.

125.Menkin-Smith L, Winders WT. Plasmodium vivax malaria. In: StatPearls. Treasure Island: StatPearls Publishing; 2022.

126.Mikolajczak SA, Vaughan AM, Kangwanrangsan N, Roobsoong W, Fishbaugher M, Yimamnuaychok N, Rezakhani N, Lakshmanan V, Singh N, Kaushansky A. Plasmodium vivax liver stage development and hypnozoite persistence in human liver-chimeric mice. Cell Host Microbe. 2015;17:526-35.

127.Milligan R, Daher A, Graves PM. Primaquine at alternative dosing schedules for preventing relapse in people with P. vivax malaria. Cochrane Database Syst Rev. 2019;7:2656.

128.Mironova V, Shartova N, Beljaev A, Grishchenko M. Effects of climate change and heterogeneity of local climates o­n the development of P. vivax in Moscow megacity region. Int J Environ Res Public Health. 2019;16:694.

129.Mitali M, Vikash Kumar M, Varsha K, Sushil Kumar K. Molecular approaches for malaria therapy. In: Rajeev KT, editor. Plasmodium species and drug resistance. Rijeka: IntechOpen; 2021. p. Ch. 8.

130.Monroe A, Williams NA, Ogoma S, Karema C, Okumu F. Reflections o­n the 2021 World Malaria Report and the future of malaria control. Malar J. 2022;21:154.

131.Muller I, Jex AR, Kappe SH, Mikolajczak SA, Lindner S, Flannery EL, Ansell B, Lerch A. Transcriptome and histone epigenome of Plasmodium vivax salivary-gland sporozoites point to tight regulatory control and mechanisms for liver-stage differentiation in relapsing malaria. Int J Parasitol. 2019;49(7):501-13.

132.Myers-Hansen JL, Abuaku B, Oyebola MK, Koram KA, Ghansah A. Assessment of antimalarial drug resistant markers in asymptomatic P. falciparum infections after 4 years of indoor residual spraying in Northern Ghana. PLoS o­ne. 2020;15:e0233478.

133.Naing C, Htet NH, Aye SN, Aung HH, Tanner M, Whittaker MA. Detection of asymptomatic malaria in Asian countries: A meta-analysis of diagnostic accuracy. Malar J. 2022;21:50.

134.Nascimento JR, Brito-Sousa JD, Almeida ACG, Figueiredo EFG. Prevalence of glucose 6-phosphate dehydrogenase deficiency in highly malaria-endemic municipalities in the Brazilian Amazon: A region-wide screening study. Lancet Regional Health-Americas. 2022;12:100273.

135.Nekkab N, Lana R, Lacerda M, Obadia T, Siqueira A, Monteiro W, Villela D, Mueller I, White M. Estimated impact of tafenoquine for Plasmodium vivax control and elimination in Brazil: A modelling study. PLoS Med. 2021;18:e1003535.

136.Ngotho P, Soares AB, Hentzschel F, Achcar F, Bertuccini L, Marti M. Revisiting gametocyte biology in malaria parasites. FEMS Microbiol Rev. 2019;43:401–14.

137.Nguitragool W, Mueller I, Kumpitak C, Chaimungkun W. Very high carriage of gametocytes in asymptomatic low-density P.falciparum and P. vivax infections in western Thailand. Parasit Vectors. 2017;10:1-9.

138.Noisang C, Prosser C, Meyer W, Chemoh W, Ellis J, Sawangjaroen N, Lee R. Molecular detection of drug resistant malaria in Southern Thailand. Malar J. 2019;18:275.

139.Noviyanti R, Carey-Ewend K, Trianty L, Balasubramanian S, Park Z, Utami RA. Hypnozoite depletion in successive Plasmodium vivax relapses. PLoS Neglect Trop Dis. 2022;16:e0010648.

140.Obaldia N 3rd, Meibalan E, Sa JM, Ma S, Wirth DF, Duraisingh MT, Wellems TE, Marti M. Bone marrow is a major parasite reservoir in Plasmodium vivax Infection. mBio. 2018;9(3):e00625-18. 

141.Obaldía N, Barahona I, Lasso J, Avila M, Marti M. Comparison of PvLAP5 and Pvs25 qRT-PCR assays for the detection of P. vivax gametocytes in field samples preserved at ambient temperature from remote malaria endemic regions of Panama. PLoS Negl Trop Dis. 2022;16:e0010327.

142.Oduma CO, Koepfli C. P. falciparum and P. vivax adjust investment in transmission in response to change in transmission intensity: A review of the current state of research. Front Cellular Infect Microbiol. 2021;11:1237.

143.Oladipo HJ, Tajudeen YA, Oluwaseyi EM, AbdulBasit MO, Adebisi YA, El-Sherbini MS. Increasing challenges of malaria control in sub-Saharan Africa: Priorities for public health research and policymakers. Ann Med Surg. 2022;81:104366.

144.Olliaro PL, Barnwell JW, Barry A, Mendis K, Mueller I, Reeder JC, Shanks GD, Snounou G, Wongsrichanalai C. Implications of Plasmodium vivax biology for control, elimination, and research. Am J Trop Med Hyg. 2016;95:4–14.

145.Ome-Kaius M, Kattenberg JH, Zaloumis S, Siba M, Kiniboro B, Jally S, Ginny J. Differential impact of malaria control interventions o­n P. falciparum and P. vivax infections in young Papua New Guinean children. BMC Med. 2019;17:1-13.

146.Park JW. Changing Transmission Pattern of Plasmodium vivax malaria in the Republic of Korea: relationship with climate change. Environ Health Toxicol. 2011;26:e2011001. 

147.Pasini EM, Kocken CH. Parasite-host interaction and pathophysiology studies of the human relapsing malarias Plasmodium vivax and Plasmodium ovale infections in non-human primates. Front Cell Infect Microbiol. 2021;10:614122.

148.Patankar S, Sharma S, Rathod PK, Duraisingh MT. Malaria in India: The need for new targets for diagnosis and detection of Plasmodium vivax. Proteomics Clin Appl. 2018;12:e1700024.

149.Paton DG, Childs LM, Itoe MA, Holmdahl IE, Buckee CO, Catteruccia F. Exposing Anopheles mosquitoes to antimalarials blocks Plasmodium parasite transmission. Nature. 2019;567:239–43.

150.Patouillard E, Griffin J, Bhatt S, Ghani A, Cibulskis R. Global investment targets for malaria control and elimination between 2016 and 2030. BMJ Glob Health. 2017;2:e000176.

151.Pett H, Bradley J, Okebe J, Dicko A, Neuvonen M. CYP2D6 polymorphisms and the safety and gametocytocidal activity of single-dose primaquine for P.falciparum. Antimicrob Agents Chemother. 2019;63:e00538-e519.

152.Pham Vinh T. Epidemiology of Plasmodium vivax malaria in Central Vietnam. UCL-Université Catholique de Louvain; 2018.

153.Phyo AP, Dahal P, Mayxay M, Ashley EA. Clinical impact of vivax malaria: A collection review. PLoS Med. 2022;19:e1003890.

154.Popovici J, Roesch C, Rougeron V. The enigmatic mechanisms by which Plasmodium vivax infects Duffy-negative individuals. PLoS Pathog. 2020;16:e1008258.

155.Potter BM, Xie LH, Vuong C, Zhang J, Bandara Herath H, Tekwani BL. Differential CYP 2D6 metabolism alters primaquine pharmacokinetics. Antimicrob Agents Chemother. 2015;59:2380-7.

156.Prah JK, Amoah S, Yartey AN, Ampofo-Asiama A, Ameyaw EO. Assessment of malaria diagnostic methods and treatments at a Ghanaian health facility. Pan Afr Med J. 2021;39:251.

157.Price RN, Commons RJ, Battle KE, Thriemer K, Mendis K. Plasmodium vivax in the Era of the Shrinking Plasmodium falciparum Map. Trends Parasitol. 2020;36:560-70.

158.Price RN, von Seidlein L, Valecha N, White NJ. Global extent of chloroquine-resistant Plasmodium vivax: a systematic review and meta-analysis. Lancet Infect Dis. 2014;14:982-91.

159.Rehn T, Lubiana P, Nguyen THT, Pansegrau E, Roth LK, Brehmer J, Roeder T, Metwally NG. Ectopic expression of P. vivax vir genes in P.falciparum affects cytoadhesion via increased expression of specific var genes. Microorganisms. 2022;10:1183.

160.Rishikesh K, Saravu K. Primaquine treatment and relapse in Plasmodium vivax malaria. Pathogens Global Health. 2016;110:1–8.

161.Rodrigo C, Rajapakse S, Fernando D. Tafenoquine for preventing relapse in people with Plasmodium vivax malaria. Cochrane Database Syst Rev. 2020;9:10458.

162.Rodríguez JAI, Rodríguez SNI, Olivera MJ. Plasmodium vivax malaria across South America: management guidelines and their quality assessment. Rev Soc Bras Med Trop. 2020;53:e20200179.

163.Rosenthal PJ. Malaria in 2022: Challenges and progress. Am J Trop Med Hyg. 2022;106:1565-7.

164.Russo G, Faggioni G, Paganotti GM, Pomponi A, De Santis R, Tebano G, Mbida M. Molecular evidence of Plasmodium vivax infection in Duffy negative symptomatic individuals from Dschang, West Cameroon. Malar J. 2017;16:1–9.

165.Sato S. Plasmodium: A brief introduction to the parasites causing human malaria and their basic biology. J Physiol Anthropol. 2021;40:1.

166.Shaikh MS, Ali B, Janjua M, Akbar A, Haider SA, Moiz B, Raheem A, Baird JK, Beg MA. Plasmodium in the bone marrow: Case series from a hospital in Pakistan (2007-2015). Malar J. 2021;20:1-6.

167.Sharma S, Verma R, Yadav B, Kumar A, Rahi M, Sharma A. What India can learn from globally successful malaria elimination programmes. BMJ Glob Health. 2022;7:e008431.

168.Soto AM, González-Cerón L, Montoya A. Recurrent P. vivax cases of both short and long latency increased with transmission intensity and were distributed year-round in the most affected municipalities of the RACCN, Nicaragua (2013-2018). Int J Environ Res Public Health, 2022;19:6195.

169.Spring MD, Lon C, Sok S, Sea D, Wojnarski M, Chann Set al. Prevalence of CYP2D6 genotypes and predicted phenotypes in a cohort of Cambodians at high risk for infections with Plasmodium vivax. Am J Trop Med Hyg. 2020;103:756-9.

170.Spring MD, Sousa JC, Li Q, Darko CA, Morrison MN, Paolino KM, Twomey PS et al. Determination of cytochrome P450 isoenzyme 2D6 (CYP2D6) genotypes and pharmacogenomic impact o­n primaquine metabolism in an active-duty US military population. J Infect Dis. 2019;220:1761-70.

171.Stevens-Hernandez CJ, Flatt JF, Kupzig S, Bruce LJ. Reticulocyte maturation and variant red blood cells. Front Physiol. 2022;13:834463. 

172.Stewart AGA, Zimmerman PA, McCarthy JS. Genetic Variation of G6PD and CYP2D6: Clinical Implications o­n the use of primaquine for elimination of P. vivax. Front Pharmacol. 2021;12:784909.

173.Storm J, Jespersen JS, Seydel KB, Szestak T, Phula P, Wang CW. Cerebral malaria is associated with differential cytoadherence to brain endothelial cells. EMBO Mol Med. 2019;11:e9164.

174.Su X-Z, Zhang C, Joy DA. Host-malaria parasite interactions and impacts o­n mutual evolution. Front Cell Infect Microbiol. 2020;10:587933.

175.Sutanto I, Tjahjono B, Basri H, Taylor WR, Putri FA, Meilia RA, Setiabudy R, Nurleila S, Ekawati LL, Elyazar I. Randomized, open-label trial of primaquine against vivax malaria relapse in Indonesia. Antimicrob Agents Chemother. 2013;57:1128-35.

176.Taylor C, Crosby I, Yip V, Maguire P, Pirmohamed M, Turner RM. A review of the important role of CYP2D6 in pharmacogenomics. Genes. 2020;11:1295.

177.Taylor AR, Watson JA, Chu CS, Day NPJ, Nosten F, Neafsey DE, Imwong Met al. Resolving the cause of recurrent Plasmodium vivax malaria probabilistically. Nat Commun. 2019;10:5595.

178.Teklehaimanot A, Teklehaimanot H, Girmay A, Woyessa A. Case report: Primaquine failure for radical cure of P. vivax malaria in Gambella, Ethiopia. Am J Trop Med Hyg. 2020;103:415-20.

179.Tham W-H, Beeson JG, Rayner JC. Plasmodium vivax vaccine research: We’ve o­nly just begun. Int J Parasitol. 2017;47:111-8.

180.Thomas D, Tazerouni H, Sundararaj KGS, Cooper JC. Therapeutic failure of primaquine and need for new medicines in radical cure of Plasmodium vivax. Acta Trop. 2016;160:35-8.

181.Thomson-Luque R, Bautista JM. Home Sweet Home: Plasmodium vivax-infected reticulocytes-the younger the better? Front Cell Infect Microbiol. 2021;11:675156.

182.Thomson-Luque R, Scopel KK. Immature reticulocytes as preferential host cells and the challenges for in vitro culture of Plasmodium vivax. Taylor & Francis; 2015.

183.Tiwari M. Glucose 6 phosphatase dehydrogenase (G6PD) and neurodegenerative disorders: Mapping diagnostic & therapeutic opportunities. Genes Dis. 2017;4:196-203.

184.Torres K, Ferreira MU, Castro MC, Almeida G, Rodrigues PT, Corder RM. Malaria resilience in South America: Epidemiology, vector biology, and immunology insights from the Amazonian International Center of excellence in malaria research network in Peru and Brazil. Am J Trop Med Hyg. 2022;107:168-81.

185.Totino PR, Lopes SC. Insights into the cytoadherence phenomenon of Plasmodium vivax: The putative role of phosphatidylserine. Front Immunol. 2017;8:1148.

186.Vallejo AF, García J, Amado-Garavito AB, Arévalo-Herrera M, Herrera S. Plasmodium vivax gametocyte infectivity in sub-microscopic infections. Malar J. 2016;15:48.

187.Vantaux A, Péneau J, Cooper CA, Kyle DE, Witkowski B, Maher SP. Liver stage fate determination in Plasmodium vivax parasites: characterization of schizont growth and hypnozoite fating from patient isolates. BioRxiv. 2022.06.16.496373. 

188.Venkatesan P. The future of malaria control in light of RTS. S The Lancet Microbe. 2022;3:e251.

189.Venugopal K, Hentzschel F, Valkiūnas G, Marti M. Plasmodium asexual growth and sexual development in the haematopoietic niche of the host. Nat Rev Microbiol. 2020;18:177–89.

190.Verma A, Joshi H, Singh V, Anvikar A, Valecha N. Plasmodium vivax msp-3α polymorphisms: analysis in the Indian subcontinent. Malar J. 2016;15:1–13.

191.Viviani R, Messina I, Bosch JE, Dommes L, Scholl C, Stingl JC. Effects of genetic variability of CYP2D6 o­n neural substrates of sustained attention during o­n-task activity. Transl Psychiatry. 2020;10:338.

192.Voorberg-van der Wel A, Zeeman AM. Modeling Relapsing Malaria: Emerging technologies to study parasite-host interactions in the liver. Front Cell Infect Microbiol. 2020;10:606033.

193.Waite JL, Suh E, Lynch PA, Thomas MB. Exploring the lower thermal limits for development of the human malaria parasite. Plasmodium falciparum Biol Lett. 2019;15:20190275.

194.Watson J, Taylor WRJ, Menard D, Kheng S, White NJ. Modelling primaquine-induced haemolysis in G6PD deficiency. eLife. 2017;6:e23061.

195.White NJ. Why do some primate malarias relapse? Trends Parasitol. 2016;32:918–20.

196.WHO. Global technical strategy for malaria 2016-2030 (WHO). 2015.

197.WHO. WHO recommends groundbreaking malaria vaccine for children at risk. World Heal Organ 1. 2021. https://www.who.int/news/item/06-10-2021.

198.World Health Organization. World Malaria Report 2021

199.Wilairatana P, Masangkay FR, Kotepui KU, De Jesus Milanez G, Kotepui M. Prevalence and risk of Plasmodium vivax infection among Duffy-negative individuals: A systematic review and meta-analysis. Sci Rep. 2022;12:1–13.

200.Zavala F. RTS,S: the first malaria vaccine. J Clin Invest. 2022;132(1):e156588.

201.Zhang R, Lee W-C, Lau Y-L, Albrecht L, Lopes SC, Costa FT, Suwanarusk R, Nosten F, Cooke BM, Rénia L. Rheopathologic consequence of Plasmodium vivax rosette formation. PLoS Negl Trop Dis. 2016;10:e0004912.

202.Zhang X, Wei H, Zhang Y, Zhao Y, Wang L, Hu Y, Nguitragool W, Sattabongkot J, Adams J, Cui L, et al. Genetic diversity of Plasmodium vivax reticulocyte binding protein 2b in global parasite populations. Parasit Vectors. 2022;15:205.

203.Zhong D, Koepfli C, Cui L, Yan G. Molecular approaches to determine the multiplicity of Plasmodium infections. Malar J. 2018;17:1-9.

Ngày 23/04/2024
CN. Nguyễn Thái Hoàng&TS.BS. Huỳnh Hồng Quang
(Viện Sốt rét-KST-CT Quy Nhơn)
 

THÔNG BÁO

   Dịch vụ khám chữa bệnh chuyên khoa của Viện Sốt rét-KST-CT Quy Nhơn khám bệnh tất cả các ngày trong tuần (kể cả thứ 7 và chủ nhật)

   THÔNG BÁO: Phòng khám chuyên khoa Viện Sốt rét-KST-CT Quy Nhơn xin trân trọng thông báo thời gian mở cửa hoạt động trở lại vào ngày 20/10/2021.


 LOẠI HÌNH DỊCH VỤ
 CHUYÊN ĐỀ
 PHẦN MỀM LIÊN KẾT
 CÁC VẤN ĐỀ QUAN TÂM
 QUẢNG CÁO

Trang tin điện tử Viện Sốt rét - Ký Sinh trùng - Côn trùng Quy Nhơn
Giấy phép thiết lập số 53/GP - BC do Bộ văn hóa thông tin cấp ngày 24/4/2005
Địa chỉ: Khu vực 8-Phường Nhơn Phú-Thành phố Quy Nhơn-Tỉnh Bình Định.
Tel: (84) 0256.3846.892 - Fax: (84) 0256.3647464
Email: impequynhon.org.vn@gmail.com
Trưởng Ban biên tập: TTND.PGS.TS. Hồ Văn Hoàng-Viện trưởng
Phó Trưởng ban biên tập: TS.BS.Huỳnh Hồng Quang-Phó Viện trưởng
• Thiết kế bởi công ty cổ phần phần mềm: Quảng Ích